No.2ベストアンサー
- 回答日時:
>二次方程式の問題です
2次方程式の問題だとわかってるなら、そのように解けば良い。
>(1) この放物線と正の部分の2点と交わる
この問題文はおかしい。
この放物線が“x軸の”正の部分と2点で交わる、でないと可笑しい。
x軸の正の部分と2点で交わるから、y=x^2+mx+2 と y=0(x軸)と連立した、x^2+mx+2=0が正の解を2つ持つと良い。但し、重解も解が2個とする。
判別式≧。2解の和=-m>0、2解の積=2>0 のmの共通範囲を求める。
>(2) この放物線とx軸のx<-1の部分が異なる2点で交わる。
考えられる解き方はいくつかある。
(解法-1) 解と係数を使う。
2解をα、βとすると、α+1<0、β+1<0 だから、判別式≧0、(α+1)+(β+1)=(α+β)+2<0、(α+1)*(β+1)=αβ+(α+β)+1>0.
これに解と係数から、α+β=-m、αβ=2を代入し、共通範囲を求める。
(解法-2) 解の分離の知識を使う。
f(x)=x^2+mx+2=0 と、すると 判別式≧0、f(-1)>0、軸(=-m/2)<-1.として共通範囲を求める。
なぜ、こうなるか? 放物線を考えてみると良い。
(解法-3) 本質的には、解法-2 と同じなんだが。
y=f(x)=x^2+mx+2=(x+m/2)^2+4-m^2/4 であるから、この放物線が、x軸のx<-1で交点を持つには、4-m^2/4<0、f(-1)>0、軸(=-m/2)<-1。
(解法-4)
x^2+mx+2=0から、x^2+2=-mx と変形して、放物線:y=x^2+2 と 原点を通る直線:y=-mx がx<-1で2つの交点を持つ条件を考える。
と、いくつか方法はあるが、(解法-2)が一番簡単。この方法は、教科書で習ってるはずだが?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
楕円の書き方
-
【 数I 2次関数 】 問題 放物線...
-
2次関数
-
X軸に関して対称といえる理由を...
-
放物線の平行移動についてちょ...
-
次の極方程式の表す曲線を直交...
-
高一 二次関数 Q,二次方程式x^2...
-
日常生活で放物線や双曲線の例...
-
数学Iについて教えてください!!...
-
二次関数です。
-
高一数学 なぜ≦から<に変わる...
-
軌跡について
-
y=ax^2+bx+cのbは何を表してい...
-
単位円の内部にある放物線の弧...
-
放物線y=2x² を平行移動した曲...
-
x軸と2点(α,0),(β,0)で交わ...
-
放物線y=x^2+a と円x^2+y^2=9に...
-
複素数平面上の座標軸ってどう...
-
高一数学 二次関数の式で y=a...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
tの値が変化するとき、放物線y=...
-
二次関数の良さ
-
双曲線の焦点を求める時はなぜ√...
-
【至急】困ってます! 【1】1、...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
パラボラアンテナはなぜ放物線...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
-
数学の問題です。 実数x、yが、...
-
数3 放物線 y^2=4pxという式を...
-
数学における「一般に」とは何...
おすすめ情報