ここから質問投稿すると、最大4000ポイント当たる!!!! >>

次の公式を証明せよ。
div(f▽g)-div(g▽f) = f▽^2g-g▽^2f

f,g:スカラー関数 v:ベクトル関数
とする。

という問題です。
わかるかた、丁寧に教えていただけるとうれしいです。
よろしくお願いします。

▽^2は▽の肩に2が乗っているという意味です。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

丁寧に計算すればよい。

単に手間がかかるだけです。
スカラーになりますので途中で出てくるベクトルの成分を全て計算する必要があります。

(f∇g)のx成分=f∂g/∂x
(f∇g)のy成分=f∂g/∂y
(f∇g)のz成分=f∂g/∂z
であるから
div(f∇g)=∂{(f∇g)のx成分}/∂x+∂{(f∇g)のy成分}/∂y+∂{(f∇g)のz成分}/∂z
=∂(f∂g/∂x)/∂x+∂(f∂g/∂y)/∂y+∂(f∂g/∂z)/∂z
この式を積の微分公式を使い展開していきます。

同様にdiv(g∇f)を計算する。

右辺は∇^2=(∂^2/∂x^2+∂^2/∂y^2+∂^2/∂z^2)を入れるだけ。
左辺の式を変形して右辺の式の形に持っていけばよいでしょう。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング