遺伝子研究でベクターがよく使われていますが、どんな場合にどのベクターを用いるのかという選択の基準はどのようになっているのでしょうか?
 具体的には
 1クローニングベクターと発現ベクターはベクターの何が違うのですか?
 2プラスミドベクターやファージベクターをどう使い分けるのですか?
 3同じプラスミドベクターでもpucやpblueやPBRだどがありますがどう使い分け  ているのでしょうか?

詳しい方教えてください  

このQ&Aに関連する最新のQ&A

A 回答 (2件)

1について


基本的に同じで、発現ベクターをクローニングに使うこともできますが、クローニングベクターとは一般的にカラーセレクションなどをできるものをいいます。
2について
通常のたんぱく質にはプラスミドで十分です。
大きなフラグメントの場合、テンプレート(cDNAなど)が少ない場合、高いタイターを得たい場合などファージを使います。
3について
発現ベクターについては、fusion protein作成用のtagやあるたんぱく質がはじめから含まれているようなものや、いろいろなプロモーターを持つものがあります。
あとからどのように精製したいか、(抗体を使いたいとか、GSTで精製したいとか、キレートカラムを使いたいとか)また、どの生物で発現させたいか(bacteriaならlac promotorとか、mammalならcytomegallovirusとか)によって、説明書をよく見て選択してください。
    • good
    • 0
この回答へのお礼

お礼が大変遅れました。まもなくベクターを使うことになります。がんばります。

お礼日時:2001/06/14 01:06

1,2については



Recombinant DNA second edition ワトソン・組換えDNAの分子生物学
などの参考書を読まれた方がよくわかると思います。
ベクターを構成するそれぞれの部分、つまりoriやプロモーターなどをそれぞれ勉強していただければわかると思います。
例えばブルースクリプト(TA vector)に遺伝子組み込んでも正しく発現しませんよね。何でかな?これを発現用のpGEXに入れればちゃんとできる。目的にあわせて構造が違うのです。

3については上の二つがわからないと難しいでしょう。ホスト株の事や、コピー数、誘導条件などで選択します。それ以外にもいろいろありますけど。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QpUCベクターについて

製品のサイトを見てもよく分からなかったので詳しい方いましたら
お願いします。

pUC系(pUC18)はlacプロモーターを有していますが、
これはIPTGで誘導されるのですか?

ベクターマップにlacIが見当たらないのです。
pUC系のベクターにラクトースオペロンが存在するのかが
分かりません。

よろしくお願いします。
ちなみに青白判定は行いません。

Aベストアンサー

ANo.1の回答には一部間違いがありますので勝手に補足させてもらいます。
そもそも、pUCタイプベクターは青白選択を行うために開発されたベクターですので、まずはその原理を理解されるのがよろしいかと。

まず、pUCタイプベクターなど、α-complementationによる青白選択を行うためのベクターには、lacプロモーター(lacP)、lacオペレーター(lacO)、そしてlacZ遺伝子のα-flagment部分が乗っています。
http://bio.takara.co.jp/catalog/catalog_d.asp?C_ID=C0329

また、青白判定を行う際にホスト株から野生型lacZが発現しては困るので、このような目的に使うホスト株(DH5α、JM109など)は通常ラクトースオペロンを欠失させています。この遺伝子型は出典によって異なりますがおおよそΔ(lac-proAB)やΔ(lacZYA-argF)U169などと表現されます。
ただしこれだとlacZ Ω-flagmentが発現していないので、別途ゲノム上(DH5α)、またはF'因子上(JM109)にlacZ Ω-flagmentを恒常的に発現させるための配列を導入してあります(遺伝子型:lacZΔM15)。
さらに、JM109などは、未誘導時のベクター上lacプロモーターからの発現を強力に抑制するよう、F'因子上に恒常発現変異型lacIを配置してあります(lacIq)。

IPTGによる強制発現誘導は、ゲノム上由来、ベクター上由来を問わずlacIqという遺伝子型を持つ大腸菌で特に有効です。というかlacIqによるlacプロモーターの発現抑制を解除するために使用します。JM109などのlacIqを持つホスト株にpUC18を形質転換し、IPTGを含む培地中で培養すると、ベクター上のlacプロモーターからの発現が起こり、培地中にX-galが存在すれば青くなります。逆にlacIq遺伝子型を持たないDH5αでは、pUC18を形質転換しX-galのみを含む培地上に播種するだけでコロニーは青くなります。

以上を踏まえ、質問者さんに対する直接の回答としては
「lacO領域を持っているのでIPTGによって発現誘導はかかる。ただし、lacIq遺伝子型が無い場合はIPTG無しでもそれなりに発現する」
となります。

ANo.1の回答には一部間違いがありますので勝手に補足させてもらいます。
そもそも、pUCタイプベクターは青白選択を行うために開発されたベクターですので、まずはその原理を理解されるのがよろしいかと。

まず、pUCタイプベクターなど、α-complementationによる青白選択を行うためのベクターには、lacプロモーター(lacP)、lacオペレーター(lacO)、そしてlacZ遺伝子のα-flagment部分が乗っています。
http://bio.takara.co.jp/catalog/catalog_d.asp?C_ID=C0329

また、青白判定を行う際にホスト株から...続きを読む

Qベクターとプラスミドと形質転換

ベクターとプラスミドって何が違うんですか?
意味的にはほとんど同じだと思うんですが。

形質転換で大腸菌に入れて増やしますが形質転換の時に導入した物と同じものが得られるんですよね?

形質転換によってプラスミドはどれくらい増えるものなのですか?

Aベストアンサー

こんばんは。
もう答えは出ておりますので、補足を少しします。

プラスミドベクターはハイコピーの物とローコピーの物があります。
一つの細胞内(ここでは大腸菌一体の事をさします)。で増えるプラスミドの量はベクター内の複製起点及びそ周辺のDNAシークエンスによって異なります。

pUC、pBR系などの有名なハイコピーベクタープラスミドの複製起点はColE1をアレンジした配列が含まれており、一細胞内で500程度のコピー数になります。

それに反してpACYC系に見られるローコピーベクタープラスミドはp15の様な複製起点が厳密に定義されている物はコピー数が少ないです。
これによって一細胞内でのコピー数は20-30程度です。
この様に考えますとベクターコピー数も収量に大きく関与するファクターと言えます。

No.1さんは恐らくハイコピープラスミドベクターのオーバナイトカルチャーの事をご指摘されているのだと思います。

下らない補足、失礼致しました。

QSDS電気泳動について教えて下さい。

SDS電気泳動ってどういうものなのでしょうか?
検索してみるとタンパク質の変性を加えて用いるということは分かったのですが、
それ以外のことは分かりません。
どなたか詳しい方教えて下さい。 

Aベストアンサー

まず、SDS電気泳動(多くの場合はSDS-PAGE, SDS-polyacrylamide gel electrophoresisと言います)をやる目的ですが、タンパク質をサイズの違いで分離する方法です。例えば、細胞の中にはかなりの種類のタンパク質があるため、何かの方法で分離して検出する必要があります。SDS-PAGEでは、この分離を「タンパク質のサイズ(タンパク質の長さ)の違い」で行います。

SDS-PAGEの原理ですが、
1.タンパク質をSDSで変性させる(タンパク質の立体構造が壊れる)
2.電気泳動でタンパク質をポリアクリルアミドゲルの「網目」を通過させる(大きいサイズほど流れにくく、小さいサイズのタンパク質は流れやすい)
というものです。網目を通過しやすいかしにくいかでタンパク質の長さを測定します。結果として、ゲルの下の方には小さいタンパク質が、上の方には大きいタンパク質がきます。

SDSで変性させる理由ですが、タンパク質を直鎖状にすることです。タンパク質はその機能を発揮するために特有の立体構造(疎水結合やジスルフィド結合などを利用して)を形成します。タンパク質をそのまま泳動すると、ポリアクリルアミドゲルの「網目の通りやすさ」はタンパク質の長さだけに影響されず、タンパク質の形状(立体構造)にも影響を受けます。

SDS-PAGEを行う場合の多くは、タンパク質の長さだけを知りたいので、タンパク質の立体構造に影響される電気泳動は望ましくありません。そこで、SDSでタンパク質を直鎖状にして電気泳動します。

では、SDSをいれるとなぜ、タンパク質が直鎖状になるか、です。SDSは親水基と疎水基の両方をもつ化合物です。そして、その親水基は負(マイナス)に荷電しています。

タンパク質の立体構造はアミノ酸残基(アラニン、グリシン、リジン、トリプトファン・・・)の性質(特にアミノ酸残基がもつ電荷)の影響を大きく受けます。SDSがタンパク質に作用すると、SDSの疎水基側がタンパク質に親水基側が溶媒側に結合します。このタンパク質に結合したSDSの親水基(マイナスに荷電)がタンパク質を構成する様々なアミノ酸の特性を打ち消してしまいます。結果として、SDSが結合したタンパク質はアミノ酸残基の影響をうけられなくなり直鎖状になります。

また、このようにSDSが結合したタンパク質はマイナスに荷電しますので、電気泳動をするとタンパク質(とSDSの複合体)はマイナスからプラスの方へ泳動されていきます。

最後に、立体構造に大きな影響を与えるジスルフィド結合に関してです。このジスルフィド結合はSDSによって壊されません。そこで、多くのSDS-PAGEを行う場合は、SDSと共に2-mercaptoethanolやDTTといったジスルフィド結合を壊す還元剤で処理したタンパク質を電気泳動します。

なお、立体構造も含めて解析したい場合は、Native PAGEと呼ばれる方法で電気泳動を行います。

まず、SDS電気泳動(多くの場合はSDS-PAGE, SDS-polyacrylamide gel electrophoresisと言います)をやる目的ですが、タンパク質をサイズの違いで分離する方法です。例えば、細胞の中にはかなりの種類のタンパク質があるため、何かの方法で分離して検出する必要があります。SDS-PAGEでは、この分離を「タンパク質のサイズ(タンパク質の長さ)の違い」で行います。

SDS-PAGEの原理ですが、
1.タンパク質をSDSで変性させる(タンパク質の立体構造が壊れる)
2.電気泳動でタンパク質をポリアクリルアミドゲ...続きを読む

Q原核生物と真核生物

原核生物と真核生物の遺伝情報発現機構の相違点について分かることがあれば教えて下さい。

Aベストアンサー

結構たくさんあるのですが。

まず、転写。原核生物も真核生物もはRNAポリメラーゼがDNAを転写しますが、原核生物はイントロンを含まないmRNAができます。真核生物はエキソン(タンパク質コードする領域)とイントロン(コードしない領域)を含むmRNA前駆体なるものを作ります。この前駆体はスプライシングという操作を受けて、イントロンが切り離されます。さらに、5'末端にキャップ構造を、3'末端にアデニンがたくさん連なったpolyAを付加されます。これで真核生物のmRNAが完成します。

原核生物は核を持たないので細胞質で直接転写が行われ、その場でリボソームにより翻訳されます。しかし、真核生物は核で転写が行われるため、リボソームが翻訳をするためには核の外にmRNAが出ないといけないのです。キャップ構造は、核の外に出ていいよというシグナルの役割を果たすといわれています。

また、原核生物ではひとつのmRNAが複数の関連のあるタンパク質を同時にコードしているポリシストロン性が見られますが、真核生物では通常ひとつのmRNAからは一種類のタンパク質しかできません(モノシストロン性)。原核生物はこうして複数のタンパク質を同時に発現することですばやく環境に適応できます。

非常に簡単な説明でしたが、詳しいことはご自分でお調べになってくださいな。がんばってください!

結構たくさんあるのですが。

まず、転写。原核生物も真核生物もはRNAポリメラーゼがDNAを転写しますが、原核生物はイントロンを含まないmRNAができます。真核生物はエキソン(タンパク質コードする領域)とイントロン(コードしない領域)を含むmRNA前駆体なるものを作ります。この前駆体はスプライシングという操作を受けて、イントロンが切り離されます。さらに、5'末端にキャップ構造を、3'末端にアデニンがたくさん連なったpolyAを付加されます。これで真核生物のmRNAが完成します。

原核生物は核を持た...続きを読む

Qプロモーター領域

ある既知のタンパク質遺伝子のプロモーター領域の配列を知りたいというときにはどのように検索すればよろしいのでしょうか。
タンパク質そのものの配列までは調べられたのですが…その後がよくわからなくて。

Aベストアンサー

実験的に同定するのは結構手間です。
まず、転写開始点を正確に決めておく必要があります。
簡便には、5' RACEの産物の端がどこにきてるかで見てもいいと思いますが、完全に伸びきっていない逆転写産物もPCRで増やしてしまうので、多少のあいまいさがでてきます。
正確に決めるには昔ながらのprimer extensionやS1 mappingが必要でしょう。
で、プロモーターは(発現をmodulateするエンハンサーは話が別です)、典型的には転写開始点の-50 bp以内にあります。たとえば、真核生物では、-20 bp 前後にTATA boxまたはGC box、さらに-15 bp くらい上流に-CAATboxとか。そういう典型的な配列があれば、8割がたそこがプロモーターだという蓋然性を言うことができます(かならずしも典型的なプロモーターばかりではありませんが)。
ちゃんと実験的に証明しようとしたら、候補となる領域にレポーター遺伝子をつないで、in vitroやin vivoで転写活性を調べなければならないでしょう。システマティックに欠失シリーズや、点突然変異を作って、どの配列がプロモーター活性に必要十分であるかを明らかにすれば完璧です。

実験的に同定するのは結構手間です。
まず、転写開始点を正確に決めておく必要があります。
簡便には、5' RACEの産物の端がどこにきてるかで見てもいいと思いますが、完全に伸びきっていない逆転写産物もPCRで増やしてしまうので、多少のあいまいさがでてきます。
正確に決めるには昔ながらのprimer extensionやS1 mappingが必要でしょう。
で、プロモーターは(発現をmodulateするエンハンサーは話が別です)、典型的には転写開始点の-50 bp以内にあります。たとえば、真核生物では、-20 bp 前後にTATA boxま...続きを読む

QゲノムDNAライブラリーとcDNAライブラリーの違い

ゲノムDNAライブラリーとcDNAライブラリーの違いって何でしょうか?

また、これらのライブラリー中にクローン化されている遺伝子の構造の大きな違いって?

よろしくお願いします

Aベストアンサー

まず、DNA=遺伝子ではないということと、「遺伝子<ゲノム」なのを考えればわかると思いますが、ゲノムライブラリーは、ゲノムを制限酵素で切断したもの全てをライブラリー化したものです。つまり、遺伝子だけでなく、遺伝子ではない部分も取り込みます。
それに対してcDNAライブラリーは、mRNAからcDNAを合成し、ライブラリー化するので、そこには、遺伝子のみが含まれます。
つまり、遺伝子のタンパク発現・機能解析を行いたい時に、cDNAライブラリーを用いる場合が多いです。
クローン化されているものに、違いはありませんよ。ミューテーションを除いて、全く同じものが複製されます。

Q吸光度と光学濃度

初めまして。
現在細胞濃度の測定器に関する翻訳を
しているのですが、
Optical Density (OD)を
「吸光度」と訳して提出したところ、
「なぜ一般的な光学濃度という言葉を
使わないのか教えてほしい」と言われてしまいました。
ネットで探しても、吸光度と光学濃度の
言葉の意味の違いがよくわかりません。
ちなみに、この機器は、細胞濃度や細胞増殖率
を測定するのに役立つということです。

例として私の訳を以下に示します。
「吸光度測定を使用した早期増殖率の正確なモニタリング」
(原文)Accurately Monitor Early-Stage Growth Rates using Optical Density Measurements

私はこの分野の知識がなく、とても困っています。
どなたかお助けください。お願いします。

Aベストアンサー

まず,吸光度 absorbance も光学濃度 (光学密度) optical density も,光散乱がなく単純な透過吸収しかおこっていない範囲ではまったく同じものです.定義は透過率 transmittance の逆数の常用対数.
しかし,細胞懸濁液などの場合は必ず光散乱が伴います.この場合においては,吸光度という言葉は使いません.吸光度は本来あくまで散乱のない系について定義され,使用されるものです.
一方,光学密度は散乱があろうがなかろうが,測定条件における透過率から機械的に上記の定義に従って計算されるものなので,この場合は吸光度とも absorbance とも言いません.

物理的な意味はともかくとして,absorbance に対する訳語は吸光度であり,optical density に対する訳語は光学密度あるいは光学濃度です.これらを混用することは,誤訳です.原文著者の意向を尊重し,よけいな解釈はせずにそのように訳すのが適当でしょう.

Qプラスミド精製の原理

大腸菌からプラスミドを取り出す(精製)の
原理を簡単にいうとどんな感じですか?

今はキアゲンのキットを使っているので
いまいち原理がつかめません。
塩化セシウム、ボイル法とかありますが、
教科書を読んでもいまいちピンきません。

簡単に教えていただけませんか。

Aベストアンサー

1.大腸菌のサスペンションにアルカリ溶液を入れる
(大腸菌の膜が壊れて、タンパクやDNAなどが出てくる。DNAはアルカリで変性して一本鎖になる)

2.酸で中和する
(変性したタンパクなどは析出、長いゲノムDNAは中和で二本鎖に戻ろうするが、長いので絡まって析出。プラスミドDNAは小さいので二本鎖に戻って溶液中に存在)

3.遠心分離して上澄みを回収
(タンパクや絡まったゲノムDNAなどは沈殿、上澄みにあるプラスミドDNAを回収)

4.昔は(10年前の記憶だと)、フェノール・クロロホルムで、残りのタンパク質・脂質などを除く。
(脂質はフェノール層へ、DNA・RNAは水層へ、タンパク質は中間層へ分離するので、水層を回収)

5.その後、イソプロパノールでDNA・RNAを沈殿させる。(イソプロパノールでDNAの水和水が取られて、DNAが不溶化して沈殿する)

6・RNA分解酵素でRNAを分解して、もう一度フェノール抽出をして、エタ沈(イソプロと同じ原理)して、その沈殿を回収するとプラスミドDNAが得られる。

キアゲンは、4のところで、カラムにかけると、DNAが樹脂に結合するので、bufferで不要なものを洗い流して、最後にpHを変えると、プラスミドDNAは溶出されてきます。キアゲンのホームページからマニュアルをダウンロードすれば、詳しく書いてありますよ。

1.大腸菌のサスペンションにアルカリ溶液を入れる
(大腸菌の膜が壊れて、タンパクやDNAなどが出てくる。DNAはアルカリで変性して一本鎖になる)

2.酸で中和する
(変性したタンパクなどは析出、長いゲノムDNAは中和で二本鎖に戻ろうするが、長いので絡まって析出。プラスミドDNAは小さいので二本鎖に戻って溶液中に存在)

3.遠心分離して上澄みを回収
(タンパクや絡まったゲノムDNAなどは沈殿、上澄みにあるプラスミドDNAを回収)

4.昔は(10年前の記憶だと)、フェノール・クロロホルム...続きを読む

Q発現ベクターのしくみ

遺伝子工学等の実験で発現ベクターをよく見かけますが、どういった原理なんでしょう?例えばGFP融合タンパク質だったりとあると思いますが。組み換えしなくても環状の発現ベクターを細胞内に入れるだけで機能するのはなぜでしょうか?

Aベストアンサー

ベクターにはプロモーターとかの転写因子が結合する領域が既に設計されています。
目的遺伝子をベクターに組み込んだプラスミドを核内に入れると、
転写因子がペタペタくっついてどんどん転写が開始されます。
その結果、目的タンパクが発現されるわけです。
プラスミドは細胞内で複製されません。
時間がたつと分解されますし、細胞が分裂するごとに薄まっていきます。
なので、1週間もすると発現はなくなっちゃいます。
たまにゲノムに組み込まれて、ずっと発現し続けることもあります。

Q脱イオン水、MilliQ、蒸留水 の違いを教えて下さい

こんにちは。お世話になります。

バイオ、生化学系の実験に従事しているものですが「水」について教えて下さい。

水道水、脱イオン水、MilliQ、蒸留水(二段蒸留水)、超純水の違いを教えて下さい。
お互いの関係などありましたら(○○を~すると△△になる等)教えていただけると
わかりやすいかもしれません。

また、実験内容によってはエンドトキシンを気にする実験もありますが、エンドトキシンフリーの水を使う場合はどれを選べばよいのでしょうか?
動物細胞培養用に使う場合はどの水を選べばよいのでしょうか?

よろしくお願いいたします。

Aベストアンサー

pinokoBBさん、こんにちは。

バイオ・生化学関係に用いられる水は水道水をプレフィルターを通し、イオン交換・蒸留・逆浸透法、限外濾過などを複数回組み合わせて生成します。

プレフィルターは鉄さびや大き目のゴミを取り除くに用います。

イオン交換法は酸性・強アルカリ性の樹脂を通し、イオン化合物を除く方法でこれを行った水がイオン交換水(脱イオン水)です。水の純度の評価には比抵抗を用いますが、およそ数百kΩ・cmの水が得られます。この段階で除けるのはイオン化合物だけで有機物・微生物は除けません。

蒸留法は水を蒸留することで不純物を除く方法です。イオン交換法と組み合わせて2回蒸留することが一般的です。一般的な2次蒸留水の比抵抗は数MΩ・cmでバイオ・生化学関係には十分な純度です。動物培養細胞にも使用可能です。エンドトキシンも完全にフリーとまではいかないけれどもある程度の除去はできています。蒸留法は多くの不純物を除去可能ですが100度付近の沸点を持つ物質は除けません。

逆浸透法は半透膜に圧力をかけて精製する方法です。

限外濾過法は限外濾過膜を通す方法です。孔径は半透膜が数十nmに対し、限外濾過膜は数nmです。それゆえ、数kDa以上の分子であれば、限外濾過法で除けますので、エンドトキシンやRNaseなども除去できます。本当にエンドトキシンフリーな水が必要でしたら限外濾過法を行った水が必須です。ただ、普通のCOSとかHEKとかの動物細胞培養でしたら2次蒸留水でも十分です。蛍光検出用のマイクロアレイなんかは限外濾過水が必須なようです。

超純水は十数MΩ・cmの水のことです。MilliQはミリポア社の超純水装置を用いて作った水で比抵抗は15MΩ・cm以上と高純度の水です。MilliQに関してはイオン交換樹脂を通し、逆浸透法、限外濾過法を用いて精製しているようです。

>また、実験内容によってはエンドトキシンを気にする実験もありますが、エンドトキシンフリーの水を使う場合はどれを選べばよいのでしょうか?
これに関しては上で書いたように限外濾過膜で精製した水です。MilliQが当てはまるでしょう。(超純水も一般的には限外濾過をしているのでこれも当てはまりますかね。)

>動物細胞培養用に使う場合はどの水を選べばよいのでしょうか?
これは、2次蒸留水以上の純度があれば十分です。2次蒸留水、MilliQ水、超純水が使用できます。

ただ、水関係の装置は日頃のメンテナンスが重要でイオン交換樹脂とか水を貯めるタンク、蛇口に汚染がないかは確認する必要があります。

実験書には必ずはじめのほうに書いてあることですので、pinokoBBさん自身でなにか実験書をご参照ください。

pinokoBBさん、こんにちは。

バイオ・生化学関係に用いられる水は水道水をプレフィルターを通し、イオン交換・蒸留・逆浸透法、限外濾過などを複数回組み合わせて生成します。

プレフィルターは鉄さびや大き目のゴミを取り除くに用います。

イオン交換法は酸性・強アルカリ性の樹脂を通し、イオン化合物を除く方法でこれを行った水がイオン交換水(脱イオン水)です。水の純度の評価には比抵抗を用いますが、およそ数百kΩ・cmの水が得られます。この段階で除けるのはイオン化合物だけで有機物・微生物は...続きを読む


人気Q&Aランキング