No.1ベストアンサー
- 回答日時:
集合X={0, 1}上の関係R={<0,0>, <0,1>, <1,0>, <1,1>}は反射的であり推移的だから擬順序関係だけれども,反対称性を持ちませんから半順序関係ではない.
なお念のため,「擬順序集合であって、半順序集合(順序集合)でないような集合」とおっしゃるけれども,それは集合Xの性質ではなくて,X上の関係Rの性質の話です.関係Rとは,Xの要素の対<x,y>を全部集めた集合X×Xの部分集合だ,ってことはお分かりなんでしょう?
ご回答ありがとうございました。
具体的で身近な例をあげていただきたいとおもったので、擬順序関係とせず、あえて擬順序集合とさせていただいた次第です。
>関係Rとは,Xの要素の対<x,y>を全部集めた集合X×Xの部分集合だ,ってことはお分かりなんでしょう?
これに関してはよくわかりません、お暇があればどういうことなのか教えていただけるとありがたいです。
No.2
- 回答日時:
擬順序関係aRbを
グラフG上の点の集合上で、
特定の点oからの各点aへの最短経路のリンクの数をl(a)として
経路a→....→bが存在し、経路上の任意の隣接点x,y(a→..→x→y→..→b)でl(x)>l(y)とならない
a,bに対して定義します
このとき反射律(aのみのリンクを辿らない経路も経路として認めるものとすれば)は成り立ち
推移律も明らかですが、
隣接する2点x,yでl(x)=l(y)ならばxRyかつyRxですがx!=yで、反対称律は成り立ちません
No.3
- 回答日時:
ANo.1につけられたコメントについて.
[1]
> これに関してはよくわかりません
(1) 集合Xにおける何かある2項関係Rが分かっているものだとしましょう.すると,Xの任意の要素二つa,bを持ってくれば「aRb が成り立つか,成り立たないかのどっちか」である.そこで,Xの要素二つのペア<a,b>の集合
X×X = {<a,b> | a∈X, b∈X}
を用意して,その部分集合
Y={<a,b> | <a,b>∈X×X であって aRbである }
を考えれば,もちろん,<a,b>∈Y と aRb は同じ意味になります.
(2) さて,最初に「関係Rが分かっているものだと」しましたが,Rが「一体どう分かっている」のか.つまりRをどうやって数学で書き表せばいいかというと,結局このYを使うのです.つまり,「aRbが成り立つ」と言いたいペア<a,b>を全部含み,「aRbが成り立たない」と言いたいペア<a,b>を一切含まないような集合Yを作れば,これでRが決まった事になります.
だから,aRbとは<a,b>∈Yによって定義された関係ということです.
(3) そこでさらに,YのことをRと書く事にすると,aRbとは<a,b>∈Rのことに他なりません.
以上を整理しますと,
「2項関係RとはX×X = {<a,b> | a∈X, b∈X}の部分集合である.なお,<a,b>∈RのことをaRbと書く」
非常に簡潔ですね.Rがどういう関係なのかは,集合Rによって表されていますから,これ以上ごちゃごちゃ言う必要はありません.
.
[2] なお,XがN個の要素を持つ有限集合なら,X×XはN^2個の要素を持ち,したがって2項関係はちょうど2^(N^2)通り存在します.それを性質によって分類したのが「擬順序」だの「半順序」だの「全順序」だの.
[3] 具体的な例として挙げた
X={0, 1}, R={<0,0>, <0,1>, <1,0>, <1,1>}
が「具体的」でないとおっしゃるのは,あらゆる関係を統一して扱う上記[1]のような観点をご存じなかったのでしょう.[1]をご理解になれば,これは最も具体的に書かれた関係の例だってことがお分かりになるはず.
さて,これを「身近」に感じるかどうかは,「身近と感じるように」解釈すればいいわけでして,たとえば
0:ラーメン
1:つけめん
aRb :「P氏はaに比べて,bが同じぐらい好き」という関係
で,このP氏はラーメンとつけめんが同じぐらい好きなのだとして,X={0, 1}の要素同士を比べてもらうと
0R0 :「P氏はラーメンに比べて,ラーメンが同じぐらい好き」
0R1 :「P氏はラーメンに比べて,つけめんが同じぐらい好き」
1R0 :「P氏はつけめんに比べて,ラーメンが同じぐらい好き」
1R1 :「P氏はつけめんに比べて,つけめんが同じぐらい好き」
はいずれも真になるので,
R={<0,0>, <0,1>, <1,0>, <1,1>}
ということになります.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報