計算が嫌いで苦手な理系のものです.

質題のとおり,2つのガウス分布の積の計算をしたいのですが,自分でおこなっても答えに至っていません.
そのためどうしても計算法を知りたいと思い, この場をお借りして質問させていただきました.

問題はガウス分布p_1(x)=N(x|m_1,a^-1), p_2(x)=N(x|m_2,b^-2)の積を求めよというシンプルなもの.
ちなみにmは平均, a,bは精度となってます.
答えは
p(x)=N(x|m,g^-1)
m=(a*m_1+b*m_2)/(a+b)
g=a+b
となるようです.

簡単だと思うのですが,なんか至ってない.
詳細の説明込みでご回答いただけると助かります.
よろしくお願い致します.

A 回答 (3件)

「積」がp(x) = p_1(x)p_2(x)のことであるなら、質問にあるようなコタエにはならない。


問題が求めているのはおそらく畳み込み (convolution)

p(x) = ∫ p_1(t)p_2(x-t) dt (積分はt=-∞~∞の定積分)

でしょうよ。だとしても、

> p_1(x)=N(x|m_1,a^-1), p_2(x)=N(x|m_2,b^-2)

というんじゃあ、aとbは相互に単位が一致していないので、質問にあるようなコタエにはならない。

 そこも修正したとして、あとは単に定積分の計算をやるだけだが、さて、一体どこが分からんと仰るのかなあ。
出来たところまで書いてみては?
    • good
    • 0

密度関数の積 p1(x1)・p2(x2) を、


領域 x1・x2 = x 上で積分するだけです。
ただ黙々と計算しましょう。
    • good
    • 0

m_1,m_2は何ですか。

mとどういう関係にあるのですか。

この回答への補足

ご回答ありがとうございます.
これはこちらの記述ミスでして,m_1,m_2はp_1,p_2の平均です.
mはpの平均です.
申し訳ございませんでした.

補足日時:2011/11/11 23:17
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Aベストアンサー

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると
   両方に(b2-b1)をかけた式で a1(b2-b1)-(a1b2-a2b1)=-a1b1+a2b1
   =b1(-a1+a2)>0 となるので a1>(a1b2-a2b1)/(b2-b1) となります
   したがって、ここでの解は(1)の解でよいことになります。
2.a1≦x<a2 のとき・・・x-a1は正、x-a2は負だから
   b2(x-a1)>-b1(x-a2)
   これを解いて、x>(a1b2+a2b1)/(b1+b2)
   ここで、1.のときと同様にして (a1b2+a2b1)/(b1+b2) とa1,a2
   との大小関係を考えると、省略しますが、
     a1<(a1b2+a2b1)/(b1+b2)<a2 となり、
   ここでの解は (a1b2+a2b1)/(b1+b2)<x<a2・・・(2)
3.a2≦x のとき・・・x-a1もx-a2も正だから
   b2(x-a1)>b1(x-a2)
   これを解いて x>(a1b2-a2b1)/(b2-b1)
   同様に a2 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると、また
   省略しますが a2>(a1b2-a2b1)/(b2-b1) となり
   ここでの解は a2≦x・・・(3)

以上、(1)~(3)が解となります。
各場合について、数直線をかいて考えるといいでしょう。

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (...
続きを読む

Q(i)spanX=V ならば x∈V,x=Σ[i=1..n](xi),(ii)x∈V,∥x∥^2=Σ[i=1..n]||^2ならばXは完

お世話になっています。

[Q]X={x1,x2,…,xn}を内積空間Vの正規直交集合とせよ。この時,次の(i),(ii)を示せ。
(i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi)
(ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完全

完全の定義は「正規直交集合Xが完全とはVの中での最大個数の正規直交集合の時,Xを
完全と言う」です。
つまり,#X=max{#S∈N;(V⊃)Sが正規直交集合}を意味します。

証明で行き詰まっています。

(i)については
x∈Vを採ると,spanX=Vよりx=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。
これからΣ[i=1..n](<x,xi>xi)にどうやって持ってけばいいのでしょうか?

あと,(ii)についてはさっぱりわかりません。
何か助け舟をお願い致します。

Aベストアンサー

>x=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。
<xi,x>を計算すれば終わり

>(ii)についてはさっぱりわかりません
「任意の」x∈Vに対して
∥x∥^2=Σ[i=1..n]|<x,xi>|^2
ならばXは完全

x1,...,xnとは異なるyをとり,
x1,...,xn,yが正規直交であると仮定する.
||y||^2 = Σ[i=1..n]|<y,xi>|^2を計算すれば
矛盾がでてくる.

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.


人気Q&Aランキング

おすすめ情報