人に聞けない痔の悩み、これでスッキリ >>

何を調べてもわかりません。助けてください。

発光減衰曲線は通常、指数関数の和で表わされる。

これはわかります。

ただ、これを実際の式で表すと

If(t) = C1 exp (-t/T1)+C2 exp (-t/T2)+・・・

というように、各項にプレエクスポネンシャルファクターと呼ばれるC1、C2の係数がついてきます。

このプレエクスポネンシャルファクターとは一体何者なんでしょうか?

どんな論文や参考書で調べても”プレエクスポネンシャルファクター”について言及している部分がなく困っています。

励起状態の量に関する重要な情報を含むそうなのですが???です。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

Pre exponential factorとは、特別な言葉ではなく単純に「指数項の係数」という意味です。


ただ、多くはアレニウスの式の係数を表すときに用いる言葉です。
アレニウスの式は反応速度の温度依存性を表すものですから、その発光機構が多成分の場合にはそれだけの和を求める、という意味の式でしょう。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q吸光度?蛍光強度?励起強度?

いま研究で蛍光測定の実験を行おうと思っているんですが、
吸光度と励起強度と蛍光強度
が頭の中でごちゃ混ぜになってしまい、いまいち理解できません。
どうか、分かりやすい説明できる方がいらしたらぜひお願いいたします。

Aベストアンサー

No.1です。補足しますと、
・測定対象に当てる光(多分、紫外線)の強さが励起強度
・測定対象に当てた光の強さと反射(あるいは透過)して戻ってきた光の強さの差分(つまり測定対象に吸収された光の強さ)を、当てた光の強さで割ったものが吸光度
・測定対象に光を当てたことにより発した蛍光の強さが蛍光強度

Q量子収率とは???

量子収率という言葉はよく聞くのですが、いまいちよく分かりません。

どなたか分かりやすくご説明して頂けないでしょうか?

お願いします。

Aベストアンサー

量子収量の定義は「光化学反応において、吸収した光子に対する生成物の割合」です。例えば、反応物に光を照射し、そのうち1molの光子を吸収して0.5molの生成物を得た場合、量子収率は50%ということになります。光子のmol数は光強度、振動数、照射時間、プランク定数、アボガドロ数から計算されます。

Q蛍光スペクトル

蛍光スペクトルと励起スペクトルについて教えてください

励起光の波長を変化させて蛍光の波長を固定して測定したものが励起スペクトルで、励起光を固定して蛍光の波長を測定したものが蛍光スペクトルだというのはわかるのですが、2つがどういうものかということがよくわかりません。

教科書のスペクトルと見ると、横軸は波数で蛍光の波長だと、わかるのですが、励起光の波長はどこに表されているのでしょうか?

またどうして励起スペクトルと蛍光スペクトルが鏡像関係にあるのかもわかりません。

あまり難しい言葉や数式は使わずわかりやすく回答してもらえれば幸いです。

Aベストアンサー

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギーの低い状態へ移動する)を経て励起状態振動基底状態へ移動します。そして、図では緑の矢印で示されている蛍光が発光します。

質問者様のおっしゃる励起スペクトルはこの青色の矢印の波長を変えながら緑色の矢印すべてひっくるめた蛍光全体の強度を測ります。このとき、電子励起状態の振動基底状態や振動励起状態(図では太い横線が各電子状態の振動基底状態を示し、その上の細い横線がその電子状態の振動励起状態を示しています。)へ励起されますので、励起光の波長は電子励起状態の各振動状態のエネルギーに対応したものとなります。溶液などでは、振動励起状態へ励起してもすぐにその電子状態の振動基底状態へ緩和されますので、緑の矢印全体の強度というのは、励起された分子の数に比例します。つまり、励起スペクトルは分子の吸収スペクトルに比例したようなスペクトルが得られるわけです。(もちろん、いろいろ例外はありますが)

さて一方、質問者様のおっしゃる蛍光スペクトルは緑色の矢印をさらに分光器などで分散させて矢印一本一本を別々の波長として観測するスペクトルです。つまり、波長は電子励起状態の振動基底状態から電子基底状態の振動励起状態のエネルギーに対応したものとなります。

蛍光スペクトルにおいて、励起光の波長がわからないと言うことですが、溶液などでは励起分子はすぐに電子励起振動基底状態へ緩和しますので、励起光の波長を変えて励起する分子の振動状態を変えても、蛍光スペクトルはすべて電子励起振動基底状態からのもので、波長とその強度比は変わりません(励起スペクトルのように全体の強度はかわりますが)。このような場合、励起光の波長を書かないことが多いです。

図でもわかるように、励起光の波長と蛍光発光の波長はは電子励起振動基底状態のエネルギーをはさんで、励起光は電子励起状態の振動エネルギーだけ高いエネルギー(短い波長)になり蛍光は電子基底状態の振動エネルギーだけ引いエネルギー(長い波長)になり、それぞれの振動エネルギー構造が似ていれば、鏡像のような形になることがわかります。

以上、「励起光が書いていない」ということから類推して、すべて溶液の蛍光測定と仮定してお答えしました。気体や分子線を使ったLIFではちょっと話がかわってきますので、その点はご留意ください。

参考URL:http://www.jp.jobinyvon.horiba.com/product_j/spex/principle/index.htm#01

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q普通自動車の運転免許の正式名称

を教えてください。
履歴書になんてかけばいいかわかりません。

普通自動車第一種免許や第一種普通運転免許とかいわれていますが。

警察などの公式な場所に問い合わせてみた人がいましたら教えてください。

Aベストアンサー

抜粋です.「普通自動車免許」ですね.
「第一種運転免許」はありますが,「普通自動車第一種免許」や「第一種普通運転免許」とは言わないようです.第二種の場合は名称に入り,「普通自動車第二種免許」のように言うようです.

--------------------
道路交通法
第六章 自動車及び原動機付自転車の運転免許
第八十四条  自動車及び原動機付自転車(以下「自動車等」という。)を運転しようとする者は、公安委員会の運転免許(以下「免許」という。)を受けなければならない。
2  免許は、第一種運転免許(以下「第一種免許」という。)、第二種運転免許(以下「第二種免許」という。)及び仮運転免許(以下「仮免許」という。)に区分する。
3  第一種免許を分けて、大型自動車免許(以下「大型免許」という。)、普通自動車免許(以下「普通免許」という。)、大型特殊自動車免許(以下「大型特殊免許」という。)、大型自動二輪車免許(以下「大型二輪免許」という。)、普通自動二輪車免許(以下「普通二輪免許」という。)、小型特殊自動車免許(以下「小型特殊免許」という。)、原動機付自転車免許(以下「原付免許」という。)及び牽引免許の八種類とする。
4  第二種免許を分けて、大型自動車第二種免許(以下「大型第二種免許」という。)、普通自動車第二種免許(以下「普通第二種免許」という。)、大型特殊自動車第二種免許(以下「大型特殊第二種免許」という。)及び牽引第二種免許の四種類とする

参考URL:http://law.e-gov.go.jp/cgi-bin/idxselect.cgi?IDX_OPT=2&H_NAME=&H_NAME_YOMI=%82%c6&H_NO_GENGO=H&H_NO_YEAR=&H_NO_TYPE=2&H_

抜粋です.「普通自動車免許」ですね.
「第一種運転免許」はありますが,「普通自動車第一種免許」や「第一種普通運転免許」とは言わないようです.第二種の場合は名称に入り,「普通自動車第二種免許」のように言うようです.

--------------------
道路交通法
第六章 自動車及び原動機付自転車の運転免許
第八十四条  自動車及び原動機付自転車(以下「自動車等」という。)を運転しようとする者は、公安委員会の運転免許(以下「免許」という。)を受けなければならない。
2  免許は、第一種運...続きを読む

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Q発光強度の単位は

分光計測器で分光分布の波形を得ました。グラフの横軸は波長で、
単位は[nm]なんですが、縦軸の発光強度の単位が解らないので質
問しました。よろしくお願いします。

Aベストアンサー

一般的に単位はありません。
吸光、蛍光、フォトン数など濃度に対する相対強度
ですので表示するのであれば、強度(intensity)でしょう。

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

Q高分子のX線構造解析(SAXS,WAXS)

X線構造解析で小角と広角の構造解析についてですが、
なぜ、
小角散乱でラメラ構造などがわかり、
広角散乱でパッキング構造、結晶化度
が解析できるのでしょうか?
実際に装置を触ったことがなく、生データの見方もわかりません。わかりやすいホームページ、解説書など教えてください。

Aベストアンサー

高分子の構造解析は専門外ですが、通常の無機結晶のX線回折を使っている者です。
小角も広角も原理は同じです。有名なブラッグの関係式
2d・sinθ = n・λ
で解釈出来ます。ここで、dは調べようとする試料の結晶の面間隔、λは測定に使うX線の波長、θはX線回折測定結果で得られるピークの位置です。nは回折の次数ですが、とりあえずn=1の場合を考えましょう。
ただし、通常の粉末用装置では、横軸に回折角度としてデティクターのスキャン角度である2θを、縦軸に測定されたX線強度で測定結果を図示します。θではなくて、2θになっていることに注意してください。
ここで、ブラッグの式を見れば分かりますが、右辺は定数なので、θの大きいピークは、小さい面間隔のdからのものであることが理解出来るでしょう。
つまり、広角側で得られるピークは高分子の小さい面間隔に関する結晶の情報=分子のパッキング情報なわけです。一方、小角領域でのピークは、面間隔の広い結晶情報=ラメラ構造の面間隔の情報になるのです。
結晶化度に関しては、実は定量的に評価するのはけっこう難しいのですが、定性的な評価としては、ピーク強度が結晶化している体積を反映しており、ピークの幅がシャープなほど結晶のサイズが大きいor結晶の構造の乱れが少ないことを意味しています。
この評価は、原理的には小角でも広角でも同じなのですが、もう一度ブラッグの式に戻ってください。2d=n・λ/sinθと変形して両辺を微分します。すると、2Δd=-nλ・Δθ・cosθ/(sinθ)^2となります。
ここで、もう一度式を変形すると
2Δd・(sinθ)^2/(nλ・cosθ)=-Δθとなります。
ピークの幅とは右辺のΔθを意味しており、これは同じ結晶の乱れΔdに対して、θの小さい領域ではΔθがどんどんと小さくなることになります。つまり、小角領域では、結晶化度を評価するためのピーク幅が非常に小さいものとなり、測定装置自体の原因によるピークの幅より小さくなってしまい、実際には測定が不可能となります。従って、結晶化度の評価は主に広角で行うのです。また、結晶化度の意味からも、分子のパッキング面の完全度で評価する方が妥当ですし。

高分子の構造解析は専門外ですが、通常の無機結晶のX線回折を使っている者です。
小角も広角も原理は同じです。有名なブラッグの関係式
2d・sinθ = n・λ
で解釈出来ます。ここで、dは調べようとする試料の結晶の面間隔、λは測定に使うX線の波長、θはX線回折測定結果で得られるピークの位置です。nは回折の次数ですが、とりあえずn=1の場合を考えましょう。
ただし、通常の粉末用装置では、横軸に回折角度としてデティクターのスキャン角度である2θを、縦軸に測定されたX線強度で測定結果を図示します。...続きを読む


人気Q&Aランキング