【先着1,000名様!】1,000円分をプレゼント!

流体力学ででてくる「Γ」の単位は何でしょうか?


円柱が100rpmで回転しているとあるのですが、求める式にΓが含まれていて、「Γ」自体の単位がわからず、代入できません。

ちなみに、直径は150mmです。

よろしくお願いします

A 回答 (2件)

渦度ωは速度を位置で微分する


ω=rot u
ので,次元はT^(-1),単位はrad/sです。

循環Γは,接線速度に周長を掛けた積分
Γ=∫udc
なので,次元はL^2*T^(-1),単位はm^2/sです。

http://hooktail.sub.jp/vectoranalysis/VortexCirc …
    • good
    • 1

渦ですね。

渦の大きさを表わす渦度は速度を距離で割ったディメンジョンを持っています。T^-1ですね。

この回答への補足

速度を距離で割ったディメンジョンであれば[m/s^2]ではないのでしょうか?

Γ=(150*10^-3)*π*100*(1/60) [m/s^2] になると考えています・・・

補足日時:2012/02/07 17:26
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q速度ポテンシャルと流れ関数

二次元非圧縮性流れでx,y方向の速度成分が

u=2xy
v=x^2-y^2+1

であるとき、速度ポテンシャルφ、流れ関数ψの
求めからが分かりません。

ぜひ、教えてください。

Aベストアンサー

W(z)=φ+iψ とおくと、

dW/dz = u-iv
   = 2xy-i(x^2-y^2+1)
   = -i(z^2+1)

より、両辺をzで積分して

W(z) = ∫(-i(z^2+1))dz
   = -i(z^3/3 + z) + const.
   = -i((x+iy)^3/3 + (x+iy) + C0+iC1
   = x^2y-y^3/3+y+C0 + i(xy^2-x^3/3-x+C1)

よって

φ = x^2y-y^3/3+y+C0
ψ = xy^2-x^3/3-x+C1

となります。

Q流体力学においての循環とはどういうものなのでしょうか?

Fに近い形をした記号の、循環という概念がよくわかりません。
回答お願いします。

Aベストアンサー

Γ(ガンマ)です.
物理や数学で出てくるrotと意味は同じです.

下記URLが参考になります.

参考URL:http://www.phys.u-ryukyu.ac.jp/~maeno/cgi-bin/pukiwiki/index.php?%C5%C5%BC%A7%B5%A4%B3%D82007%C7%AF%C5%D9%C2%E811%B2%F3

Q実質微分とは

こんばんは。

実質微分とは分かりやすく言うとなにを表しているのでしょうか?
普通の微分、偏微分とはどのように違うのでしょうか?
見識のある方、宜しくお願いします。

Aベストアンサー

私なりに微分について回答させてください。
y=sin x という関数は、xが限りなく0に近いときにはy=xと近似できることは知っていますか?おそらく偏微分という言葉を知っている方ならご存知だと思います。
 微分というのはこのy=sin xという関数をy=x に近似した行為に似ます。今の例では、xが限りなく0に近いという条件がついていましたが、微分をする際にはこの条件が「xの変化が限りなく小さいとき」という条件になるのです。
 たとえば、y=x^2という関数において、x=2.0からx=2.000000000000000001に増加したときは、yの増加のしかたはy=x^2とy=2xではほぼ変わりません。
ではx=2.000000000000000001からx=2.000000000000000002に増加したらどうかというと、これも二つの関数の間には差はほぼありません。0.000000000000000001増加するところのどこを取ってもy=2xとy=x^2という関数はほぼ同じものになります。
 x=2からx=5に変化するときは二つの関数は変化の割合もまったく異なる関数に見えますが、微小変化のときは同じ関数とみなせます。
 上空から地上の景色を見たときと、地上にいるときの景色は違います。上空からは広い範囲が見えて、人は米粒のように見えますが、地上にいたら狭い範囲しか見えないが、人の表情や町の様子がはっきり見えます。
 何が言いたいかというとy=x^2に見えていた関数が実は限りなく細かく区切って見てみるとy=2xという関数であった、ということです。
 1人1人の人間に見えても実は無数の分子からできているように、通常の関数の世界と微分した世界では見方が違います。人間界が通常の関数の世界で、微分が分子レベルの世界です。要は関数に対する視点の違いです。
 細かく分けてみたらy=x^2がy=2xに見えた。その細かく分割したのをひとつひとつつなげたのが積分です。
 ちなみにdxというのは微小変化ですよね。これが細かく区切った最小単位だと考えれば、(dy/dx)*dx=dyなどといった意味不明な計算が成り立つのも納得いただけるかもしれません。
 以上、微分の説明でした。とても分かりにくくてすみません。結局言いたかったことは、微分がミクロで積分がマクロの世界だということです。
 また、偏微分はある一方向のみに細かく区切ったときのf(x,y)の振る舞いかたを表します。
 長くてすみません。

私なりに微分について回答させてください。
y=sin x という関数は、xが限りなく0に近いときにはy=xと近似できることは知っていますか?おそらく偏微分という言葉を知っている方ならご存知だと思います。
 微分というのはこのy=sin xという関数をy=x に近似した行為に似ます。今の例では、xが限りなく0に近いという条件がついていましたが、微分をする際にはこの条件が「xの変化が限りなく小さいとき」という条件になるのです。
 たとえば、y=x^2という関数において、x=2.0からx=2.000000000000000001...続きを読む

Q流体力学に関して質問です。複素(速度)ポテンシャルに関するものです。

流体力学に関して質問です。複素(速度)ポテンシャルに関するものです。

1.複素平面状において速度UのX軸方向の一様流と原点に強さqの吹き出しがあるときの複素ポテンシャルを記述せよ
2.また、1の複素ポテンシャルで示される流れ場においてよどみ点の位置を求めよ
3.よどみ点を通る流線方程式を求めよ

という問題です。
教科書には複素ポテンシャルというものはW(z)として与えられているのですが、覚えなければならないものなのでしょうか??
勉強始めたばかりなので、参考にさせていただきたいと考えています。

上記の問題を解ける方がおられればよろしくお願いいたします。

Aベストアンサー

地球物理を習ってる大学生です。
曖昧な記憶ですがお答えします。


(1)
この流れの複素速度ポテンシャルは,重ね合わせの原理により
f(z) = Uz + (Q/2π)log z
で与えられます。(右辺第1項が一様流、第2項が湧きだし)

(2)
z を極座標で表して(z = re^iθ),速度ポテンシャルと流れ関数を求めると
f(z) = Ure^iθ + (Q/2π)log re^iθ = {U r cosθ + (Q/2π)log r}+ i{Ur sinθ + (Q/2π)θ}
となるので,速度ポテンシャルΦ と流れ関数Ψ は
Φ = Ur cosθ + (Q/2π)log r 、 Ψ = Ur sin θ + (Q/2π)θ
と求まります。

x 軸に沿った流速をu_x とすると,速度ポテンシャルよりθ = 0; r = x とおいて
u_x = ∂Φ/∂x = U + (Q/2π)*1/x
となります。u_x がゼロになる位置がよどみ点なので、x = -(Q/2π)/U
この点は湧き出しによる速度と一様流速とがちょうど打ち消しあいます。


(3)の流線方程式ってなんでしたっけ?
ごめんなさい。

あと、ポテンシャルを覚えておいた方がいいかは分からないです。
ただ、これくらいなら覚えておいてもいいかもしれませんね。

あと、独学ということですので
参考になるURLを載せておきます。

http://kenzou.michikusa.jp/FL-Dyn/FluidDyn.html

参考URL:http://kenzou.michikusa.jp/FL-Dyn/FluidDyn.html

地球物理を習ってる大学生です。
曖昧な記憶ですがお答えします。


(1)
この流れの複素速度ポテンシャルは,重ね合わせの原理により
f(z) = Uz + (Q/2π)log z
で与えられます。(右辺第1項が一様流、第2項が湧きだし)

(2)
z を極座標で表して(z = re^iθ),速度ポテンシャルと流れ関数を求めると
f(z) = Ure^iθ + (Q/2π)log re^iθ = {U r cosθ + (Q/2π)log r}+ i{Ur sinθ + (Q/2π)θ}
となるので,速度ポテンシャルΦ と流れ関数Ψ は
Φ = Ur cosθ + (Q/2π)log r 、 Ψ = Ur sin θ + (Q/2π)θ
と求まります。

x ...続きを読む

Q局所熱伝達率と平均熱伝達率について

今、熱伝達率について勉強しています。


平均熱伝達率と局所伝達率の違いは何でしょうか?

局所熱伝達率を平均したものが平均伝達率ですか?


もしそうなら、平均熱伝達率が14.38(W/mK^2)にたいして局所熱伝達率の平均が731.9(W/mK^2)なのは間違いということになりますよね?


9か所の局所熱伝達率を計算しているのですが、2374.1(W/mK^2)という結果になったものがあります。

ちなみに、これは実際に実験した結果から熱伝達率を計算しています。
なので、これは数値が大きすぎておかしいですよね?



合っているのか、間違っているのか分からず、混乱しています。
どなたか、平均熱伝達率と局所熱伝達率の違いについてお教え下さい。

Aベストアンサー

説明してある部分の他に多分条件がある、と思いますが。
局所は非常に微小な面積で評価した時の熱伝達率。
平均熱伝達率は平均ではありますが、熱伝達率の平均ではなく、総伝達熱量を伝達面積で割ったものです。
返金温度または、平均温度差として何を使うかで数値は相当違って来ますので、慎重に取り扱って下さい。

例示されている数値は十分ありうるものと思います。特におかしくはありません。
実験か何かわかりませんが、測定方法に問題がある可能性が高い。

局所熱伝達率の測定・計算方法は難しいです。
余り意味のある実験ではにように思います。
工学的には意味なし。

Q1ピクセルって何ミリですか?

1ピクセルって何ミリなのでしょう?
至急、お答えお待ちしております。
かなり急いでます。よろしくお願いいたします。

Aベストアンサー

1ピクセルが何ミリかという質問の答えになるかどうか分かりませんが、
WEB制作上に限って言えば、横100ピクセルの画像を作りたい場合、
Photoshop等では単位をピクセルで作れますが、Illustrator等の場合は、
100pointで作ります。
1pointは、0.35277ミリです。

Q格子点数と原子数

結晶について学んでおります。
まず、格子点数と原子数の違いが分かりません。

それで、diamondの単位格子の格子点数、原子数を求めようとしたときに、はたと困りました。
まず、diamondのブラベー格子がFである、そのことから、理解ができませんでした。
diamondは、fccを1/4,1/4,1/4ずらしたものの組み合わせだということは知っています。そこからdiamondのブラベー格子がFであるとなるのでしょうか。

ごめんなさい。。書いてて混乱してきました。。意味がとれない部分もあると思いますが、教えてください。

Aベストアンサー

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を結んでできる、対面が平行な六面体のことを単位胞または単位格子といいます。
単位胞は繰り返しのユニットとなります。先ほど格子はフレームを含まないと言いましたが、
それはこの結び方(単位胞の決め方)が自由であるということです。星座みたいなものだと思って下さい。
べつに菱餅のような形に結んでもいいんですが、ふつうはもっとわかりやすい(対称性の高い)立方体
などの形になるように結びます。

「単純立方格子の単位胞(立方体)にはいくつの格子点が含まれるか」という問題には
1と答えます。なぜ8ではないかというと、立方体の頂点に全て格子点があると考えると、
繰り返し並べた時に別々の立方体から来た8個の格子点が一カ所にかぶってしまうからです。
ですからそれぞれの立方体について8つの頂点のうちたとえば左下手前のものだけをその立方体に
所属する格子点と考えれば1になるわけです。そこを原点O(0,0,0)にとります。

単純立方格子をとる結晶構造のうちもっともシンプルなのは単純立方構造(simple cubic; sc)です。
これは単位胞の頂点の位置だけに一種類の原子を置いた構造で、ポロニウムのα相がこの構造です。
「格子」と「構造」はどう違うのかと思われるかもしれませんね。実際には同一視されている解説が
ほとんどですが、格子はまだ原子(やイオン)を置く前の、単なる位置の基準点の集合です。
単位胞の中に原子を置いて初めて構造になります。これが「結晶格子×単位構造=結晶構造」の意味です。
scの場合は「単純立方構造の単位胞にはいくつの原子が含まれるか」の答も1となります。

他には塩化セシウム型構造が単純立方格子です。これはセシウムイオン(Cs+)を単純立方格子の
原点(0,0,0)に置いたとき、塩化物イオン(Cl-)が立方体の中央(1/2,1/2,1/2)にくる構造です。
Cs+(0,0,0)とCl-(1/2,1/2,1/2)のペアが単位構造であり、それが各単位胞の中にあるということです。
別の見方をすればCs+だけでできた単純立方構造とCl-だけでできた単純立方構造を(1/2,1/2,1/2)だけ
ずらして重ねたと考えることもできます。しかし、あくまでも塩化セシウム構造としての単位胞は
どちらか片方だけですから、単位胞内の格子点数は1のままで原子数は2となります。

やっとダイアモンド構造に近づいてきました。ダイアモンド格子は面心立方格子(cF)をとります。
単純立方格子と比べると立方体の中にあらかじめ
 O(0,0,0)、A(0,1/2,1/2)、B(1/2,0,1/2)、C(1/2,1/2,0)
の4か所に格子点があります。他の点、たとえば(1/2,1/2,1)の格子点はひとつとなりの立方体
に所属するものと考えます。あらかじめ格子点が4つあるというのはどういう事かと言うと、
うまく単位胞を選ぶと立方体の1/4の体積のものが作れて、その中の格子点数は1になります。
このような単位胞は基本単位胞といい、たとえばOA、OB、OCを三辺とする菱形六面体がそのひとつ
です。しかしそれでは形が分かりにくいのでふつうは体積4倍の立方体の単位胞を考える代わりに
格子点数が4になっているのです。

面心立方構造(fcc)は面心立方格子の格子点にだけ原子を置いたもので、単位胞内の
格子点数は4、原子数も4です。一方、ダイヤモンド構造は炭素原子を
O(0,0,0)、O'(1/4,1/4,1/4)
A(0,1/2,1/2)、A'(1/4,3/4,3/4)
B(1/2,0,1/2)、B'(3/4,1/4,3/4)
C(1/2,1/2,0)、C'(3/4,3/4,1/4)
の8カ所に置いた構造です。これは原点に付随する(0,0,0)(1/4,1/4,1/4)の2つの炭素原子を
単位構造として、A、B、Cの3格子点にもコピーしたものと考えることができます。fccを
(1/4,1/4,1/4)だけ平行移動して重ねたものと捉えても構いませんが、ダイヤモンド構造として
の単位胞はあくまでも(0,0,0)を原点とするものだけですから、格子点数4、原子数8となります。

以上長くなってしまいましたがわからなければまたおっしゃって下さい。

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を...続きを読む

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Q対数目盛の読み方を教えてください

対数グラフの目盛の読み方がまったくわかりません。
グラフの縦線の間隔が、太くなったり細くなったりしている意味もわかりません。
しかも、“log”を使って計算しなければならない。とか。。。
誰か教えてください。

Aベストアンサー

対数グラフには片対数グラフ(縦軸が対数で横軸が等間隔)と両対数グラフ(縦横軸とも対数)がありますが、おそらく片対数のほうだろうと想定してお答えします。(両対数も方対数が分かれば自然に応用できます)

y=k・a^xという関係があるとき(そういう関係が成り立つと予想される時)、これを普通のグラフに描くとあっというまにy軸が足りなくなってしまいます。そこでy軸の目盛りを次のようにとったグラフ用紙を使うのです。

縦軸の目盛りは10本ごとに周期的に広い→狭い(上にいくに従って)となっています。その周期の区切れ目のひとつの横線をy=1の線とします。あとは一周期ごとに10、100、1000と目盛りをとります。10と100の間は10刻みで、100~1000は100刻みで、各横線に目盛りをうつのです。
1と2の間隔=10と20の間隔=100と200の間隔>2と3の間隔=20と30の間隔>、、、>9と10の間隔となるはずです。

こうやってとった「目盛りに従って」測定値(X,Y)をプロットしていきます((X,logY)ではないですよ)
すると自動的に縦方向の「実寸」はlogYをとったことになるのです。
(そうなるように線の間隔がふってあるわけです)

ここでもしY=k・a^XならばlogY=X・loga+logkとなりlogyとxは一次関数すなわち直線的関係になっているはずです。従ってプロットした点を直線で結ぶことで測定値群全体から導かれるkおよびaの値をグラフからよみとることができるわけです。(kの値は切片に、aの値は傾きに反映されますから)

文章だけでは分かりづらいかと思いますが、なんとか伝わることを期待しています(^^;

対数グラフには片対数グラフ(縦軸が対数で横軸が等間隔)と両対数グラフ(縦横軸とも対数)がありますが、おそらく片対数のほうだろうと想定してお答えします。(両対数も方対数が分かれば自然に応用できます)

y=k・a^xという関係があるとき(そういう関係が成り立つと予想される時)、これを普通のグラフに描くとあっというまにy軸が足りなくなってしまいます。そこでy軸の目盛りを次のようにとったグラフ用紙を使うのです。

縦軸の目盛りは10本ごとに周期的に広い→狭い(上にいくに従って)となっています。...続きを読む

Qエクセル、散布図でデータの一部のみの近似直線を書きたい

(1、5)、(2,8)、(3、16)、(4、25)、(5、37)というグラフをかきました。
ここでグラフのプロットは全てのデータについて表示されたままで、(3、16)、(4、25)、(5、37)だけについての近似直線を描き、式やR2値を表す方法は無いものでしょうか。
(1、5)、(2,8)というデータを消せば目的の式は得られるのですが、(1、5)、(2,8)というプロットをグラフに残したままにしたいのです。
どうぞよい知恵をお貸し下さい。

Aベストアンサー

1系列の一部のデータ範囲を対象に近似曲線を引くことは出来ないように思えます。便宜的な方法として以下が考えられます。お試しください。

■グラフの一部に近似曲線を追加する

全てのデータ範囲を選択する
|グラフウィザード 2/4 「グラフの元データ」|系列タブ|
系列1
 すでに全てのデータ範囲が対象となっている
系列2
 |追加|
 「Xの値」のボタンを押して後半のX値のセル範囲を選択する
 「Yの値」のボタンを押して後半のY値のセル範囲を選択する
グラフが作成される
全てのデータ範囲(系列1)と後半のデータ範囲(系列2)は重なっている
系列2へ近似曲線を追加する
 グラフ上、後半のデータ範囲の1要素を右クリック
 |近似曲線の追加|
 パターン・種類・オプションを指定する

■検討事項

・凡例・マーカー
無指定で系列に「系列1」・「系列2」という名前が付きます。同じ名前にすることは出来るようですが、系列2のみを消すことは出来ないようです。系列名の色を白にして見えなくする、プロットエリアのマーカーも二系列を同色とする、など考えられます。

・近似線
私は近似曲線のオプションに詳しくありませんが、全てのデータ範囲に対する近似線を引いたとして、後半のデータ範囲に対する近似線と重ならない(同形ではない)と思います。

1系列の一部のデータ範囲を対象に近似曲線を引くことは出来ないように思えます。便宜的な方法として以下が考えられます。お試しください。

■グラフの一部に近似曲線を追加する

全てのデータ範囲を選択する
|グラフウィザード 2/4 「グラフの元データ」|系列タブ|
系列1
 すでに全てのデータ範囲が対象となっている
系列2
 |追加|
 「Xの値」のボタンを押して後半のX値のセル範囲を選択する
 「Yの値」のボタンを押して後半のY値のセル範囲を選択する
グラフが作成される
全てのデ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング