新生活を充実させるための「こだわり」を取材!!

f(x)=0(-π≦x<π),x(0≦x<π)

これをフーリエ級数展開するとどうなるのでしょうか?
フーリエ級数展開した式が出ません・・・。

答えとしては
f(x)=π/4-(2/π)cosx+sinx-sin2x/2-(2/π)cos3x/3~2+sin3x/3-・・・

と解答にはありますが、一般系(?)で表記したいと考えています。
どのようにフーリエ級数展開すればいいのでしょうか?
お願いします。

教えて!goo グレード

A 回答 (4件)

少し暇だったので枝葉をつけよう。



f(x)=0(-π≦x<0),x(0≦x<π)とする。
方法:
f(x)を2・πの周期関数の周期関数に拡張して
f(x)=a[0]+Σ(n:自然数)・(a[n]・cos(n・x)+b[n]・sin(n・x))
・・・(*)
とおける。
a[m](m=0,1,2,・・・)は(*)式両辺に
∫(-π<x<π)・dx・cos(m・x)を施せば求まり
b[m](m=1,2,・・・)は(*)式両辺に
∫(-π<x<π)・dx・sin(m・x)を施せば求まる。

フーリエ級数展開について公式を覚える人がいるが以上のようにすれば覚える必要は無いですからね。
この方法は周期がTの場合もすぐに応用が効くね。

注意しないといけないのは

(*)式左辺が不連続点を持つときにはその点x=aにおいて
f(a)を(f(a+0)+f(a-0))/2に置き換えなければなりません。
まーalmost every whereで等しいということですね。
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

無事、an、bnを出して、フーリエ級数展開することができました。
ありがとうございました。

お礼日時:2003/12/25 21:27

f(x)=0(-π≦x<0),x(0≦x<π)の間違いでしょう



方法:
2・πの周期関数だから
f(x)=a[0]+Σ(n:自然数)・(a[n]・cos(n・x)+b[n]・sin(n・x))
とおける。
a[m](m=0,1,2,・・・)は
両辺に∫(-π<x<π)・dx・cos(m・x)を施せば求まり
b[m](m=1,2,・・・)は
両辺に∫(-π<x<π)・dx・sin(m・x)を施せば求まる。
    • good
    • 0

このサイトでフーリエ級数で検索すればいろいろでてきますよ。

さしずめ参考URLを除かれてはいかがでしょうか。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=706419
    • good
    • 0
この回答へのお礼

回答ありがとうございました。
参考になりました。

お礼日時:2003/12/25 21:20

f(x)=0(-π≦x<π),x(0≦x<π) は関数になっていませんね。


それは誤植だとしても、一般系とはなんですか?
一般フーリエ級数のことですか?
すると解答とは合わないなあ??

どのようにと言われても公式に代入するだけなんですけど・・・
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

お礼日時:2003/12/25 21:19

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

教えて!goo グレード

人気Q&Aランキング