
No.4ベストアンサー
- 回答日時:
#2です。
回転体の体積の計算は、
関数を 2乗してから積分するので分数計算がなおさら大変ですね。
先の回答でも書いていましたが、計算のコツをもう少し書き足しておくと。
・積分する前に、被積分関数の段階である程度計算してしまう。
・または、積分を先にしてしまってから、あとで計算する。
・そして、無理にまとめて計算しようとせずに、2個ずつや 3個ずつなどと小分けにまとめていく。
計算用紙があれば、大きめに書いて計算をしたいところです。
・最後に、くくり出した係数を忘れてしまうことが多いです。
いまの場合であれば「π」が抜けることが結構あります。
ある意味、いまミスをしておけば次からは注意できるかと思います。
そのためにも「間違えた~」だけでなく、計算も含めて復習をきちんとしておいた方がいいです。
No.5
- 回答日時:
以下、なるべく簡単にと考えたのですが、かえって面倒くさかったら
ごめんなさいです。
まず、対象となる平面図形をx軸の周りに一回転させたときに、
重なる部分が無くなるように平面図形を分割します。
xy座標の原点をO(0,0)、y=x^2-4とy=3xとの交点をA(-1,-3)、B(4,12)
y=x^2-4とx軸に関して線対象な曲線y=-x^2+4とy=3xとの交点をC(1,3)
とします。
まず、第三、第四象限の対象図形をx軸の周りに一回転させた回転体
の体積V1を、-1≦x≦2の範囲でy=x^2-4を回転させた回転体の体積V2
からOA点(-1,0)を回転させた円錐の体積V3=3πを引いて求めます。
次に第一象限の対象図形からx軸とy=3xとy=-x^2+4に囲まれた部分
(この部分は第四象限の対象図形を回転させると重なる)を除いた部分
の回転体の体積V4を、BO点(4,0)を回転させた円錐の体積V5=192πから
CO点(1,0)を回転させた円錐の体積V6=3π、1≦x≦2の範囲でy=-x^2+4
を回転させた回転体の体積V7、及び2≦x≦4の範囲でy=x^2-4を回転
させた回転体の体積V8を引いて求めます。以下計算します。
V2=∫(-1→2)∫(0→x^2-4)ydy∫(0→2π)dθdx
=π∫(-1→2)(x^4-8x^2+16)dx=153π/5
よってV1=(153π/5)-3π=138π/5
V7=∫(1→2)∫(0→-x^2+4)ydy∫(0→2π)dθdx
=π∫(1→2)(x^4-8x^2+16)dx=53π/15
V8=∫(2→4)∫(0→x^2-4)ydy∫(0→2π)dθdx=1216π/15
よってV4=192π-3π-(53π/15)-(1216π/15)=522π/5
以上から求める回転体の体積は(138π/5)+(522π/5)=132πとなります。
No.3
- 回答日時:
間違いを防ぐには回転体の断面のグラフを描くことが必要です。
回転体の断面が円盤になる場合とドウナツのように真ん中に穴のある円盤になる場合がありますので、どの範囲が穴のある場合の区間かをグラフから認識し、その区間は穴の部分を穴が無いとして求めた体積から引いてやる必要があります。
積分区間はグラフから
[-1→0] (穴の区間)
[0→1] (穴のない区間)
[1→2](穴のない区間)
[2→4](穴のある区間)
に分けて積分してやります。
V1=π∫[-1→0] (x^2-4)^2 dx -π∫[-1→0] (3x)^2 dx
V2=π∫[0→1] (x^2-4)^2 dx
V3=π∫[1→2] (3x)^2 dx
V4=π∫[2→4] (3x)^2 dx -π∫[2→4] (x^2-4)^2 dx
V=V1+V2+V3+V4
計算を簡単にするために積分の範囲と順序を入れ替えると
V=π∫[-1→1] (x^2-4)^2 dx -π∫[2→4] (x^2-4)^2 dx
+π∫[1→4] (3x)^2 dx -π∫[-1→0] (3x)^2 dx
=π[(1/5)x^5-(8/3)x^3+16x][-1→1]-π[(1/5)x^5-(8/3)x^3+16x][2→4]
+π[3x^3][1→4]-π[3x^3][-1→0]
=π{(2/5)-(16/3)+32}-π{(1/5)(4^5-2^5)-(8/3)(4^3-2^3)+16(4-2)} +3π(4^3-1-1)
=π{(2/5)-(1/3)-5+32}-π{(1/5)(1024-32)-(8/3)(64-8)+16(4-2)} +3π(64-2)
=π{(2/5)-(1/3)+27-(198+2/5)+(149+1/3)-32}+186π
=π{27-198+149-32}+186π
=-54π +186π
=132π
という結果が得られます。
No.2
- 回答日時:
#1です。
すいません、書いているうちに面積の話をしてしまってました。
失礼しました。
体積の場合も積分区間を求めるところまでは同じですね。
回転させる場合は、外側の立体から内側の立体を「繰り抜く」ことを意識しないといけません。
たとえば、2つの曲線 y= f(x)と y= g(x)で囲まれた図形を
x軸の周りに回転させた立体の体積: Vは
V
=∫[α→β] π*{ f(x )}^2 dx- ∫[α→β] π*{ g(x )}^2 dx
=π*∫[α→β] [ { f(x )}^2- { g(x )}^2 ] dx
となります。
(区間:α≦ x≦ βにおいて、f(x)≧ g(x)である。つまり、y= f(x)が外側である。としています。)
よくある間違いは、これを
V= π*∫[α→β] { f(x )- g(x ) }^2 dx
としてしまうものです。
ほんとに何気にしてしまうことが多い間違いなので、注意してください。
あくまでも「繰り抜く」ということを忘れないようにしてください。
この回答へのお礼
お礼日時:2012/04/01 23:16
わざわざ2回もありがとうございます。
そうですね、V= π*∫[α→β] { f(x )- g(x ) }^2 dxの話は学校で先生からも絶対にやってはいけないといわれていたところでした。
この問題が載っていた問題集の解答が、理解しにくかったので質問させて頂きました。
御丁寧にありがとうございます。
No.1
- 回答日時:
こんばんわ。
>求めようとすると大変めんどうな計算をしなければならないので
ということですが、どの辺が「大変めんどう」ですか?
手順としては、ざっと以下のとおりです。
(1) 放物線と直線の交点の x座標を求める。
いまの問題であれば、これらの x座標の区間が、そのまま積分区間になります。
(2) 放物線と直線のどちらが「上」にあるかを見極める。
「面積」は正の値になるものなので、
積分区間でどちらが上にあるかを見極めることが必要です。
(3) (上側の曲線・直線)-(下側の曲線・直線)を (1)の積分区間で積分する
問題のレベルとしては基本的なものですし、
センター試験でもこれより複雑な計算になることがあります。
まずは、地道に「焦らず」計算することを心掛けてみてください。
数IIの積分は分数の計算が多く出てきます。
2つずつまとめていく。なるだけ通分は後回しにする。など、
工夫次第でミスは減らせると思います。
いまの問題の計算では、知っておくと便利な「準公式」もあるにはありますが、
まずはきちんと計算することをマスターしてください。
この回答へのお礼
お礼日時:2012/04/01 19:19
回答ありがとうございました。
めんどうなのは、分数の計算が沢山でてきてしまうという意味でした。説明が足りなくてすみません。
ただnaniwacciさんが答えてくださったのは面積の求め方ではないでしょうか??
体積の求め方を教えていただけるとありがたいです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
関連するQ&A
- 1 回転体の問題です y=x^4とx=y^4で囲まれた部分をxじくのまわりに 回転してできる回転体の体積
- 2 曲線x=sinθ、y=√θ(0<=θ<=π/2)、x軸、x=1で囲まれた図形を一回転してできる回転体
- 3 y=x^2とy=xで囲まれる部分をx軸のまわりに回転して得られる立体の体積をもとめよ
- 4 数学の重積分の問題ついてです。 曲面x^2-y^2+z^2=4と平面y=0,y=2に囲まれた体積を求
- 5 問題 y=sinx(0≦x≦π)とy=x y=π-xで囲まれた図形をy=xの周りに1回転させてできる
- 6 数学の重積分についてです。 球面x^2+y^2+z^2=1と(x^2+y^2)^2=x^2-y^2が
- 7 次の放物線とx軸で囲まれた部分の面積を求めよ、y=x^2-5x,y=-x^2+4xという問題でグラフ
- 8 重積分の問題で∫ ∫(e^(-y^2))*x*y dxdy D={(x,y)|x^2+y^2<=a^
- 9 y=e^x/e、y=x、y軸で囲まれる
- 10 x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
mm3とμl
-
5
単位の換算
-
6
図形の計量の問題(644)を教えて...
-
7
円周率の2乗
-
8
1cc・1ml・1mgは同じ量ですか?
-
9
重積分
-
10
至急 1立方メートルは「何ミ...
-
11
単位 ccとml
-
12
曲面と平面と座標平面で囲まれ...
-
13
体積の略算式について
-
14
3乗は立方体の体積、4乗はな...
-
15
【三重積分】球の体積の求め方
-
16
二重積分の意味について
-
17
数1の四面体の問題についてです...
-
18
重積分により体積・面積を求め...
-
19
四面体の6つの辺の長さから体積...
-
20
四面体の体積を求める際の、高...
おすすめ情報