痔になりやすい生活習慣とは?

マクローリン展開について次の問題がわからないので教えてください。

次の関数の有限マクローリン展開を、n=4のときに書き表せ。

(1)sinx
(2)√(1+x)
(3)xsinx
(4)x/(1+x)

A 回答 (1件)

>次の問題がわからないので教えてください。


展開公式
f(x)=f(0)+f'(0)x+f''(0)x^2/2! +f'''(0)x^3/3! +f''''(0)x^4/4 + ...
を計算するだけ。
分からないのではなく、やらないでやってもらおうというだけではないですか?
ちゃんと4階までの微分係数を計算しx=0と置いて展開公式に代入するだけ。
なのに何が分からないのでしょうか?
やり方も教科書に載ってると思います。

(1)
sin(x)=x-x^3/6+...

(2)
√(1+x)=(1+x)^(1/2)=1+x/2-x^2/8+x^3/16-5x^4/128+...

(3)
(1)の両辺にxを掛けて
xsin(x)=x^2-x^4/6+...

(4)
x/(1+x)=1-1/(1+x)=1-(x+1)^(-1) なので
(x+1)^(-1)=1-x+x^2-x^3+x^4+...
x/(1+x)=1-(x+1)^(-1)=x-x^2+x^3-x^4+...

丸写ししないで
f(0),f'(0),f''(0),f'''(0),f''''(0)を計算して上の展開式になることを確認してください。
そうしないとマクローリン展開が身につかないと思います。
    • good
    • 3

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qy=e^x^x 微分 問題

y=e^x^x 微分 問題

y=e^x^xを微分せよ
両辺に自然対数をとる
logy=loge^x^x=x^x(loge)
logy=x^x
両辺に自然対数をとる
log(logy)=logx^x=x(logx)
両辺を微分すると
(1/logy)・(1/y)・y'=logx+1
y'=(logx+1)(logy)・y
y'=(logx+1)・loge^x^x・e^x^x

回答があっているかどうか教えて頂けませんか?
また、間違っている場合は解き方を示して頂けないでしょうか?

以上、よろしくお願い致します。

Aベストアンサー

>y'=(logx+1)・loge^x^x・e^x^x

loge^x^x = x^x

とすべきでしょう。あとは合っていると思います。

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q標準自由エネルギー変化について教えてください。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-AとするとAが大きいほど反応は進みやすのでしょうか?(これ本当に分かりません・・)

自由エネルギー変化ΔGについてです
ΔG=ΔG゜+RTlnK
aA+bB⇔cC+dDと言う反応ではモル分圧平衡定数とするとK=([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)
です。
質問4:そもそもΔGとは何を表現しているのですか?平衡だとΔG=0となる。これはどういうこと?
質問5:ΔG゜=-RTlnKですが、通常ΔGというとみんなこの方法で算出してしまいます。ここで標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGをごっちゃにするとエライ事になりそうですが・・・
質問6:ΔG=ΔG゜+RTln([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)でよく25℃、1atmの濃度や分圧を入れてΔGを出してますが、これはどう解釈したらよいのでしょうか?その濃度や分圧のときの自由エネルギーということ?でもそれなら25℃、1atmの生成ΔGfから算出したΔG゜とΔGが同じにならないとおかしくありませんか?
質問:そもそも上記の考え方にどこかおかしいから悩んでいるので、指摘していただけたら幸いです。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-Aとすると...続きを読む

Aベストアンサー

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べるのは大変なので
変化量を指標に用いていることは同じですが、標準生成自由エネルギーは、すべての元素が標準状態にあるとき自由エネルギーを0として、それらの単体から生成される化合物を上記の式を使って計算した物です。

反応が自発的に進むためにはΔGがマイナスでなければなりません。
ΔGは自由エネルギー変化です。
標準生成自由エネルギーΔG゜とは違います。
-RTlnK=ΔG゜ という関係から ΔG゜が負の時はKが1よりも大きい事を意味し、正の時には、その反応が進まないということではなくKが1よりも小さいことだけを意味します。
ΔG゜が大きな正の値をとるとKは著しく小さくなり、平衡点は原系の方に極端に片寄ることを意味しています。
ΔG゜=0ならばK=1ということです。

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べる...続きを読む

Q漸近展開とテイラー展開

漸近展開とテイラー展開の違いを教えてください。

Aベストアンサー

直感的でよければ、参考URLのグラフを見るとわかります。

参考URL:http://homepage1.nifty.com/gfk/Zenkin_Tenkai.htm

Qx/(x^4 +1)の積分

自分の回答では置換積分法を使う事で log|x^8 +1| /2 と出たのですが、回答には arctanx^2/2 と記されていました。
頭の悪い私には「なんで急にarctanが出てて来たの!?」という感じで非常に混乱しています。
誰か教えて頂けませんでしょうか?

Aベストアンサー

x^2=tとおくと
2xdx=dt

∫xdx/(x^4+1)dx
=(1/2)∫du/(u^2+1) (公式使用)
=(1/2)tan^-1(u)+C
=(1/2)tan^-1(x^2) +C

Qe^2xのマクローリン展開を求めたいです

e^2xのマクローリン展開を求めたいです

この展開式をxにつおて微分し、d/dx(e^2x)=2e^2xとなることを証明したいです。

同様にして、d/dxsin(3x)=3cos(3x)となることを証明したいです。

ヒントや解法お待ちしてます。

Aベストアンサー

>e^2xのマクローリン展開を求めたいです

e^xのマクローリン展開
e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+x^5/5!+x^6/6! +...

e^(2x)のマクローリン展開は
e^xのマクローリン展開のxに2xを代入すれば得られます。

e^(2x)=1+(2x)/1!+(2x)^2/2!+(2x)^3/3!+(2x)^4/4!+(2x)^5/5!+(2x)^6)/6! +...
=1+2x+2x^2+(4/3)x^3+(2/3)x^4+(4/15)x^5+(4/45)x^6 +...

>d(e^(2x))/dx
={1+(2x)/1!+(2x)^2/2!+(2x)^3/3!+(2x)^4/4!+(2x)^5/5!+(2x)^6)/6! +...}'
={2/1!+2*2(2x)/2!+2*3(2x)^2/3!+2*4(2x)^3/4!+2*5(2x)^4/5!+2*6(2x)^6)/6! +...}
=2{1+(2x)/1!+(2x)^2/2!+(2x)^3/3!+(2x)^4/4!+(2x)^5/5!+(2x)^6)/6! +...}
=2e^2x

>同様にして、dsin(3x)/dx=3cos(3x)となることを証明したいです。

sin(x)、cos(x)のマクローリン展開は
sin(x)=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-x^11/11! +... …(1)
cos(x)=1-x^2/2!+x^4/4!-x^6/6!+x^8/8!-x^10/10! +... …(2)

sin(3x)のマクローリン展開はxに3xを代入すればよいから
sin(3x)=3x-(3x)^3/3!+(3x)^5/5!-(3x)^7/7!+(3x)^9/9!-(3x)^11/11! +...
xで微分
dsin(3x)/dx
=3-3*3(3x)^2/3!+3*5(3x)^4/5!-3*7(3x)^6/7!+3*9(3x)^8/9!-3*11(3x)^10/11! +...
=3{1-(3x)^2/2!+(3x)^4/4!-(3x)^6/6!+(3x)^8/8!-(3x)^10/10!+(3x)^12/12! +...}
=3cos(3x) (∵(2)より)

>e^2xのマクローリン展開を求めたいです

e^xのマクローリン展開
e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+x^5/5!+x^6/6! +...

e^(2x)のマクローリン展開は
e^xのマクローリン展開のxに2xを代入すれば得られます。

e^(2x)=1+(2x)/1!+(2x)^2/2!+(2x)^3/3!+(2x)^4/4!+(2x)^5/5!+(2x)^6)/6! +...
=1+2x+2x^2+(4/3)x^3+(2/3)x^4+(4/15)x^5+(4/45)x^6 +...

>d(e^(2x))/dx
={1+(2x)/1!+(2x)^2/2!+(2x)^3/3!+(2x)^4/4!+(2x)^5/5!+(2x)^6)/6! +...}'
={2/1!+2*2(2x)/2!+2*3(2x)^2/3!+2*4(2x)^3/4!+2*5(2x)^4/5!+2*6(2x)^6)/6!...続きを読む

QTOEFL ITPのスコアについて教えてください。

こんにちは。
大学でTOEFLのテストを受けました。
結果は443?点でした。
ですがこのスコアはどの程度のものなのでしょうか?
というのも、こんな成績で恥ずかしながら運良く入試がよく解けて大学の特待生として入学したので、傑出していなければ落とされてしまうのではと不安でたまりません。
偏差値60前後の大学なのですが、その新入生としてはやはり悪い数字でしょうか?
実際に、500点が留学の基準と言われていますよね?
それには少なくても満たないし…。
入試が終わってから一ヶ月サボったつけが回ってきたと後悔しています。
回答よろしくお願いします。

Aベストアンサー

ITPの場合は、満点が677点。でCBTやibtとの換算表においては、PBTとまったく同じ点数となります。
http://www.ncc-g.com/page33.html
443点ということは、cbtで127、ibt43と同じということですが、ibt43が高校卒業と同じぐらいのレベルですから、大学1年生としては妥当なスコアだと思います。これから努力すればスコアは上げられますよ。
http://eq-g.com/article/exam/exam-hikaku/

Q長さの単位であるAの上に丸がついた記号は何mですか。

こんばんは。Aの上に丸がついた単位をよく見ますが、これは「オームストローム」のことでしょうか。違うのであればこの単位をメートルに直したときどのような値をとるのか教えてください。

Aベストアンサー

この答えでいいのでしょうか。

☆Å(オングストローム/angstrom) 
長さの補助単位。
10の-10乗=百億分の1メートル。電磁波の波長測定や、原子物理学・結晶学・分子学などで用いる。
記号 Å または A で表す。
スウェーデンの物理学者オングストレームの名にちなむ。

参考URL:http://www.sun-inet.or.jp/~nao2/jiten/sonota.htm


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング