ここから質問投稿すると、最大4000ポイント当たる!!!! >>

次の問題について解法がわからないのですかどのように解けばよいのでしょうか?

問)
次の行列式を計算せよ。(結果は因数分解すること)

1 a b 2
a b a b
b a b a
2 b a 1

三行三列の形になおして計算したりしてみたのですが解を得ることが出来ず詰まってしまいました。
解る方教えてください。
お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

|1 a b 2|


|a b a b|
|b a b a|
|2 b a 1|

|1 a b 2|
|1 -1 1 -1|x(a-b)
|b a b a|
|2 b a 1|

|1 a b 2|
|1 -1 1 -1|x(a-b)
|a+b 0 a+b 0|
|2 b a 1|

|1 a b 2|
|1 -1 1 -1|x(a-b)x(a+b)
|1 0 1 0|
|2 b a 1|

|1 a b 2|
|1 -1 1 -1|x(a-b)x(a+b)
|1 0 1 0|
|0 b-a+1 a-b-1 0|

|1 a b 2|
|1 -1 1 -1|x(a-b)x(a+b)x(a-b-1)
|1 0 1 0|
|0 -1 1 0|

|1 a b 2|
|1 -1 1 -1|x(a-b)x(a+b)x(a-b-1)
|1 0 1 0|
|0 -1 1 0|

|1 a b 2|
|0 -1 0 -1|x(a-b)x(a+b)x(a-b-1)
|1 0 1 0|
|0 -1 1 0|

|1 a+b b 2|
|0 -1 0 -1|x(a-b)x(a+b)x(a-b-1)
|1 1 1 0|
|0 0 1 0|

|1 a+b-1 b 2|
|0 -1 0 -1|x(a-b)x(a+b)x(a-b-1)
|1 0 1 0|
|0 0 1 0|

|1 a+b-3 b 2|
|0 0 0 -1|x(a-b)x(a+b)x(a-b-1)
|1 0 1 0|
|0 0 1 0|

|1 1 b 2|
|0 0 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
|1 0 1 0|
|0 0 1 0|

|1 1 0 2|
|0 0 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
|1 0 1 0|
|0 0 1 0|

|1 1 0 2|
|0 0 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
|1 0 0 0|
|0 0 1 0|

|1 1 0 0|
|0 0 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
|1 0 0 0|
|0 0 1 0|

|0 1 0 0|
|0 0 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
|1 0 0 0|
|0 0 1 0|

| 1 0 0|
| 0 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
| 0 1 0|

| 0 -1|x(a-b)x(a+b)x(a-b-1)x(a+b-3)
| 1 0|

(a-b)x(a+b)x(a-b-1)x(a+b-3)
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。
途中式まで細かくかいてくださったのでとてもわかりやすかったです。
ありがとうございました。

お礼日時:2004/01/11 22:24

No.2です。


ごめんなさい。最初の式のイコールの後の
第1項が間違ってました。

(誤)
  |a b 2|
1x|b a b|
  |b a 1|

(正)
  |b a b|
1x|a b a|
  |b a 1|
    • good
    • 0
この回答へのお礼

わざわざ訂正ありがとうございました。
どうやら私は展開方法を間違ってしまったようです。
回答頂いた方法でもう一度解いてみたいとおもいます。
ありがとうございました。

お礼日時:2004/01/11 22:28

余因子展開を使いましょう。



 |1 a b 2|
 |a b a b|
 |b a b a|
 |2 b a 1|

   |a b 2|   |a a b|   |a b b|   |a b a|
=1x|b a b|-ax|b b a|+bx|b a a|-2x|b a b|
   |b a 1|   |2 a 1|   |2 b 1|   |2 b a|

という感じで行列の次数を下げれば簡単。
上の第1項はさらに以下のようにできます。

|a b 2|=ax|a b|-bx|b b|+2x|b a|
|b a b|   |a 1|   |b 1|   |b a|
|b a 1|

他の項も同様。

参考URL:http://www5d.biglobe.ne.jp/~n-akira/answer/2003/ …
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード


人気Q&Aランキング