痔になりやすい生活習慣とは?

今、マークロリンの問題で迷っています

1.1/cosx=e0+e2・(x^2/2)+e4・(x^4/4!)+・・・
  e0,e2,e4,e6を求めよ
  ヒント:cosxのマクローリンをかけると1になるように定める

2.tanx=t1・x+t3・(x^3/3!)+・・・
  t1,t3,t5,t7を求めよ
  ヒント:cosxのマクローリンをかけるとsinxのマクローリンになるように定める

全然わからないので教えてください!!

A 回答 (3件)

なぜ、ヒント通りに sin x = (cos x)(tan x) を


1 - (1/3!)x^3 + (1/5!)x^5 - (1/7!)x^7 + (xの9次以上の式)
= { 1 - (1/2!)x^2 + (1/4!)x^4 - (1/6!)x^6 + (xの8次以上の式) }
・{ t1 + (t3/3!)x^3 + (t5/5!)x^5 + (t7/7!)x^7 + (xの9次以上の式) }
と書いて、右辺の括弧を展開してみようと思わないの?
各次の係数を比較すれば、t1,t3,t5,t7 の連立方程式になるでしょう?
    • good
    • 0

ライプニッツの定理を使えばいいと思います。


f(x)=1/cosx について f'(x) f"(x)を計算して、f'(x) 、f"(x)の関係をみて、ライプニッツの定理を利用すれば、テーラー展開が分かると思います。
tanxについても同様の議論で計算できます。
    • good
    • 1

本当にそんなヒントだったらちょっと疑っちゃうわけだが, それはさておき「全然わからない」にしてもいきなり「教えてください」はないんじゃない?



ヒントに「cos x のマクローリン (展開)」とか「sin x のマクローリン (展開)」とかあるよね. それは調べたの?

この回答への補足

ちゃんと調べて今までずっと自分で考えてました
でもヒントの意味が分からなくて..

補足日時:2012/06/11 02:49
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qtanxのマクローリン展開について

「f(x)=tanxのマクローリン展開をn=3まで求めなさい」という問題について、悩んでいます。

f(x)=sin(x)やf(x)=cos(x)の例を参考に、f'(0)、f''(0)、f'''(0)より級数形式の一般項を求めようとしました。

tanx=sinx/cosxなので、f'=1/cos^2xですが、このままf''、f'''と求めるのは大変面倒な気がします。

最終的な回答は、x+x^3/3+2x^5/15+34x^7/315らしいのですが、こちらから一般項に辿り着けません。

わかる方がいらっしゃいましたら、教えてください。
できましたら、途中の進め方を詳しくお願い致します。

Aベストアンサー

1/(cosx)^2=1+(tanx)^2という公式をフル活用します。
tanxをxで微分すると
(tanx)'=f'(x)=1/(cosx)^2=1+(tanx)^2
となります。
あとは
f''(x)=2*(tanx)*(tanx)'=2tanx+2*(tanx)^3
f'''(x)=2(tanx)'+2*3*(tanx)^2*(tanx)'=2+8tanx^2+6(tanx)^3
といった感じで、f''(x)、f'''(x)、…は計算できます。

Qarcsinのマクローリン展開について

arcsinxのマクローリン展開は、どのようにすればよいのでしょうか?

Aベストアンサー

マクローリン級数展開

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qgrad、div、∇

物理なのか、数学なのかという感じなのですが・・・。

まず、grad、div、∇について、分かりやすく教えていただけませんか?。
それから、たとえば、圧力pがあったとして、「grad p」の物理的意味を教えて頂けるとうれしいです。

数学も物理も苦手なので、詳しく分かりやすく教えて頂けると幸いです。

よろしくお願い致します。

Aベストアンサー

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる場所から
水平方向に 10km 動いたってあまり気圧は変わりませんが,
空の方向に 10km 動けばエベレスト
(最近は,チョモランマとかサガルマータとか呼ぶかな)
より高くなって,気圧はうんと下がっちゃいます.
で,y,z 方向には全く動かず,x 方向にだけ動いたとします.
このときの p の変化の割合は,偏微分を使って ∂p(x,y,z) / ∂x ですね.
同様に,x,z を固定して y だけ動かせば,変化の割合は ∂p(x,y,z) / ∂y,
x,y を固定して z だけ動かせば,変化の割合は ∂p(x,y,z) / ∂z.
つまり,以上の3つの偏微分で変化の様子がわかります.
ばらばらに3つ扱ってもいいですが,
ベクトル表示にして
x 成分が ∂p(x,y,z) / ∂x,
y 成分が ∂p(x,y,z) / ∂y,
z 成分が ∂p(x,y,z) / ∂z,
というベクトルにしたのが grad p です.
ベクトルにしておくと,
表示が簡単なことの他にもいろいろ便利なことがあります.

なお,creol さんの回答ははちょっと混乱されているようです.
p は圧力(の強さ)そのもの,grad p は p の変化の割合です.
その場所での圧力は p です.

div は,creol さんも書かれているように,発散です.
極限値が発散する,などの発散とは全く違いますので,念のため.
例えば,水流中に仮想的な直方体を考えてください.
水流は流れの方向がありますからベクトル量ですね.
で,場所にもよりますから,j(x,y,z) と書きましょう.
テキストファイルじゃうまく書けないですが,j はベクトルです.
この直方体の面を通って単位時間あたりに流れ出ていく水量(流出量)が
本質的に div j です(本当はちょっと修正がいる,後述).
直方体の6面分全部考えてくださいよ.
水量ですから,スカラー量ですね.
え? 流出量ばかりじゃ直方体の中の水がどんどん減っちゃう?
ええ,それでいいんです.
つまり,div j は直方体の中の水量ρ
(スカラー量,本当は密度ですが)
の単位時間あたりの減少分を表しています.
式で書くなら, div j = - ∂ρ / ∂t です.
右辺のマイナスは減少だからついているんです.
ふつうの水流(例えば,川なんか)なら?
div j の計算のときに,流出量をプラスとして考えているので,
入ってくる分(流入量)はマイナスで考えてください.
ごくふつうに川が流れているとき,
上流の方から流入量と,
下流側への流出量は同じですよね.
そうすると,プラマイうち消して,div j = 0,
直方体の中の水量は時間変化しません.

え,直方体の大きさ?
あ,それはですね,十分小さくとってください.
小さくとれば,流入量も流出量も小さくなっちゃう?
実は,正味の流出量を直方体の体積で割って
直方体を小さくした極限が本当の div j です
ρが本当は密度だと言ったのもこういうところと関係があります.

微分で表現すれば
div j(x,y,z)
= ∂jx(x,y,z) / ∂x + ∂jy(x,y,z) / ∂y + ∂jz(x,y,z) / ∂z
です.
jx は j の x 成分,他も同様.


∇の記号は creol さんの書かれているとおり.
読み方は「ナブラ」(nabla) です.
ちょっと変わった名前ですが,
竪琴(形が似ている)のギリシヤ語名から来ています.

grad,div,と並んでベクトル解析でよく出てくるものに
rot (rotation,回転)があります.

わかりやすく,ということで回答してみました.

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる...続きを読む

Qy=1/(2x-1)を微分する方法について質問します。

y=1/(2x-1)を微分する方法について質問します。

(g(x)/f(x))'=(g'(x)*f(x)-g(x)*f'(x))/(f(x))^2 を使わず解きたいのですが、なかなか答えが合いません。
途中式がおかしいのでしょうか?


途中式↓
y=1/(2x-1)=(2x-1)^(-1)
y'=(-1)(2x-1)^(-2)
y'=-(1/(2x-1)^2)

Aベストアンサー

括弧の中身が微分されていませんよ。(2x-1)を微分すると2が出てきます。


人気Q&Aランキング