1^2+2^2+...+(n-1)^2+n^2=n(n+1)(2n+1)/6

多変量解析の本を読んでいたら、上記の式が出てきました。
どうして左側の式が右側の式になるのかわかりません。
どなたか教えていただけないでしょうか。
よろしくお願いします。

A 回答 (3件)

何故1/6がでてくるのかについて一言。


1+2+3+...+n=n(n+1)/2
の式を導くのに三角形の面積を求めるときと同じようなことをしているのをご存知でしょうか。
1^2+2^2+...+n^2=n(n+1)(2n+1)/6
の式は三角錐の体積を求めるのと同じようなことをします。
で、底面の三角形の面積を求めるときの1/2と錐の体積を求めるときの1/3が
あわさって1/6が出て来るわけです。
    • good
    • 0
この回答へのお礼

nagata さん、ご回答ありがとうございます。
三角形の面積や体積が関係するとは知りませんでした。

統計に関する公式の成り立ちについては、数理統計学の本を
読むとよいことがわかりました。東大出版会や倍風館から
よい参考書が出ているようなので、探して読んでみます。

ありがとうございました。

お礼日時:2001/05/16 23:16

S_n=1^2+2^2+...+(n-1)^2+n^2 とさせてください。



まず次の式を考えます!

(k+1)^3 - k^3 = 3k^2 + 3k + 1

この式のkに1からnまでの値を代入

k=1 のとき 2^3 - 1^3 = 3*1^2 + 3*1 + 1
k=2 のとき 3^3 - 2^3 = 3*2^2 + 3*2 + 1
・ ・
・ ・
・ ・
k=n-1 のとき n^3 - (n-1)^3 = 3*(n-1)^2 + 3*(n-1) + 1
k=n のとき (n+1)^3 - n^3 = 3*n^2 + 3*n + 1

上にできたn個の式の辺々を加えると

(n+1)^3 - 1^3 = 3*(1^2+2^2+...+(n-1)^2+n^2) + 3*(1+2+...+(n-1)+n) + 1*n
n^3 + 3n^2 +3n +1 -1 = 3*S_n + 3*(1/2)n(n+1) + n

1+2+...+(n-1)+n=(1/2)n(n+1) を断わりなく使うことをお許し下さい。

3*S_n = n^3 + 3n^2 +3n - (3/2)n^2 - (3/2)n - n
= n^3 + (3/2)n^2 + (1/2)n
= (1/2)(2n^3+3n^2+n)
= (1/2)n(2n^2+3n+1)
= (1/2)n(n+1)(2n+1)
よって

S_n = (1/6)n(n+1)(2n+1)

以上です。

この回答への補足

ご回答ありがとうございます。

せっかくご回答いただいたのに申し訳ありませんが、私の
質問の仕方が悪かったようなので、訂正させてください。

なぜ突然1/6が出てくるのかがわからなかったので、左の式と
右の式がイコールになる証明というより、左の式が右の式に
変わっていく過程を知りたいと思っています。

補足日時:2001/05/14 09:26
    • good
    • 0
この回答へのお礼

lovebeliever さん、丁寧なご回答ありがとうございます。

実際に説明を追いながら計算してみようと思いましたが、
数Iも赤点のレベルなので「上にできたn個の式の辺々を加えると」
の次の式でわからなくなってしまいました。

ご説明はプリントアウトして保存しておき、本を読み進めながら
また日を改めて読み返して挑戦してみます。

とり急ぎお礼まで。

お礼日時:2001/05/14 13:16

高校の数学で数列を学んだ時に出てきた覚えがありますが,そのときは,確か数学的帰納法で証明したと思います。


n
Σ i^2 = n(n+1)(2n+1)/6
i=1
を示す。
(1) n=1のとき
左辺=1,右辺=1*/2*3/6=1で成立。

(2) n=kのとき成立していると仮定する。すなわち,
k
Σ i^2 = k(k+1)(2k+1)/6
i=1
とする。このとき,n=k+1の場合を考えると,
左辺は,仮定より
k+1
Σ i^2 = k(k+1)(2k+1)/6 + (k+1)^2
i=1
= (強引に展開。中略)
= (2k^3 + 9k^2 + 13k +1) / 6

右辺は,証明すべき式にn=k+1を代入して
 (k+1){(k+1)+1}{2(k+1)+1}/6
= (これもひたすら展開。中略)
= (2k^3 + 9k^2 + 13k +1) / 6
= 左辺

よって,n=kのとき成り立てばn=k+1のとき成り立つ。
以上より,全ての自然数iに対して与式は成立する。(証明終わり)

もっとかっこいい証明方法があるのかもしれませんが,それは他の方のお答えを待ちましょう。
    • good
    • 0
この回答へのお礼

puni2 さん、わかりやすいご回答をありがとうございます。

実際にご回答の通りに式を展開してみましたら、
(2k^3 + 9k^2 + 13k + 6) / 6 で、同じ値になりました。

本にも帰納法と書いてありましたが、実際に証明するとこの
ようになるのですね。

お礼日時:2001/05/14 13:05

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qあまのじゃくってどういう意味ですか?

あまのじゃくってどういう意味ですか?

Aベストアンサー

かっこつけたり、恥ずかしがったりして、自分の感情や思いをうまく表現できないこと。天邪鬼。

参考URL:http://ja.wikipedia.org/wiki/%E3%81%82%E3%81%BE%E3%81%AE%E3%81%98%E3%82%83%E3%81%8F

QF_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2)

のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか?

一文字を変数と見て、地道に割り算するしかないのでしょうか?
効率的な計算方法はありますでしょうか?

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^...続きを読む

Aベストアンサー

最後までは計算していませんが、次の方法でできそうです。
F_n = (b+c)(c+a)(a+b)(Σ[ABC] k_ABC a^A b^B c^C) とおきます。
(ここで、A+B+C = 2n+1 です。)
展開すると、F_n = (a^2 b + 略 + 2abc)(Σ[ABC] k_ABC a^A b^B c^C) です。
そして、F_n を例えば、a で A+2 回偏微分、a で B+1 回偏微分、
a で C 回偏微分、した後、a,b,c に 0 を代入します。
F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} に対しても同じようにします。
このようにすると、例えば C > 0 であれば、
k_ABC (A+2)!(B+1)!(C)! = (2n+1)! となり、係数が得られます。

Qどういう意味だと思いますか?

彼とLINEしていると
「返事がおくれてごめん、あまのじゃくなもので・・・」と
返事がありました。

たわいもないことをLINEでやりとりしているのですが

あまのじゃくになるというのは・・・
回答に困って返事が遅れるという意味でしょうか?

Aベストアンサー

返事が早かったり遅かったり、気まぐれだということじゃないですか?

遅れてごめんと謝ってくるところが全くあまのじゃくだとは思いませんけどね。

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む

Q「あまのじゃく」に相当する英語は?

和英辞書を引いてみますと、色々な英語が出て来ます。
perverse or cussed person; contrarian とか。
それらの英語を逆引きすると、「つむじ曲がりの」とか「意固地な」とかの日本語になって、本来の日本語の意味の「あまのじゃく」に相当しません。

皆がこう言ったらいつも反対あるいは、別のことを言いたがる人。あるいは、何かが評判になったりして、多数の人がそこに殺到する時、その風潮に絶対に乗ろうとしない人。

私が捉えている「あまのじゃく」ですが、こんな性格の人は英米圏には殆んどいないから、それに相当する英語がないと言うことでしょうか?
もし、近い英語があれば教えて下さい。

宜しくお願いします。

Aベストアンサー

 yes-man, yes-sayer(はいはいと言うことを聞く人)の対義語、no-man, no-sayer(違う違うとごねる人)が近いだろうと思います。

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Qあまのじゃくな男性

中学生男子に
あまのじゃくな人は結構いますか?

あと中学生男子は
普通に女子の肩に触れたりは
するもんですか?

回答お願いします(*´∇`*)

Aベストアンサー

中学生はあまのじゃくが多い年代でしょう。

女の子に対し興味が無いようなふりをしたり、悪態をついたり。

肩に触れるのはある程度親しいしるしだと思います。

Qmを自然数,nを奇数とするとき,2(1^n+2^n+…+m^n)がm(m+1)で割り切れる

mを自然数,nを奇数とするとき,2(1^n+2^n+…+m^n)が m(m+1)で割り切れることを証明したいのですが、あることに気づく必要があるといわれたのですが、それがどうもよくわかりません。

また、nが偶数のときには、何か別の性質があるのでしょうか?

Aベストアンサー

自然数をmで割った余りで分類する(剰余類)方法が分かっていればさほど難しい問題ではないですね

mが奇数なら自然数nはkを自然数として
n=mk,mk±1,mk±2,…,mk±(m-1)/2
mが偶数なら
n=mk,mk±1,mk±2,…,mk±(m-2)/2,mk+m/2
と表現できることに注意しましょう。


剰余で分類する問題だと、例えば

3で割り切れる数、3で割って1余る数、3で割って2余る数

のように分けることが多い気がしますが、3で割って2余る数を
3k+2=3(k+1)-1 (k=0,1,2,…)
と見れば
3k-1 (k=1,2,3,…)
と表現してもいいな、と分かりますね。
こう見るとnが奇数に限定されている理由も見えてくると思います。

余裕があったら、合同式などについても調べてみるといいかと思います。

Qあまのじゃく・・・

なんとなく、あまのじゃくな性格です。
この性格ってどうしてこうなるの?
解決する方法とかありますか?

Aベストアンサー

同じくあまのじゃくです(笑)
#1さんのおっしゃること、確かに当たってるような気が・・・。
私は最近は、思わず言い返してしまっても
後で家に帰ってから反省をするようにしています(笑)
あまり役に立つか分かりませんが
参考程度に読んでおいていただけるとありがたいです。

Qx^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2

x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)
となるのはなぜですか?
教えてください。

Aベストアンサー

1+r+r^2+・・・+r^(n-1)=(1-r^n)/(1-r)

r=x/yとおくと

1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)={1-(x/y)^n}/{1-(x/y)}
故に、
{1-(x/y)^n}={1-(x/y)}{1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)}

両辺にy^nを乗じて
x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)


人気Q&Aランキング