マンガでよめる痔のこと・薬のこと

2-ブロモ-2-メチルプロパンをメタノールに溶解した場合のE1反応とSN1反応の経路および各々の生成割合を答えなさい

という問題がわかりません。

至急お願いします。

A 回答 (1件)

反応経路は添付図を参照。


生成比はSN1: E1=1: 9
「有機化学の問題です」の回答画像1
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む

Q有機化学 SN1、SN2、E1、E2反応について教えていただきたいです

有機化学 SN1、SN2、E1、E2反応について教えていただきたいです。
有機化学を復習していて、次のような条件で各反応が起こりやすいと参考書に書いてありました。


(1)SN1反応とE1反応 → 求核性の低い試薬、第三級ハロゲン化アルキル、極性溶媒

(2)SN2反応とE2反応 → 求核性の高い試薬、第一級ハロゲン化アルキル(SN2)、第三級ハロゲン               化アルキル(E2)、無極性溶媒
 

ここで、疑問に思ったのですが、(1)でなぜ求核性の低い試薬を用いたほうが反応が起こりやすいのでしょうか。(1)と(2)ともに求核性の高い試薬を用いた方が反応は起こりやすいのではないでしょうか。また、E2反応で第三級の方が起こりやすいのは、求核試薬が攻撃できるプロトンがより多いため、という解釈であっていますでしょうか。よろしくお願いいたします。

Aベストアンサー

まず、求核性と塩基性を分けて考えるべきです。置換反応を起こすのは求核剤としての作用であり、脱離を起こすのは塩基としての作用です。
ところが、通常、求核剤は塩基性を有しており、強い求核剤は塩基性も強い傾向があります。
つまり、第三級ハロゲン化アルキルに強い求核剤を作用させても、SN2型の反応は立体障害のために起こりませんよね?その一方で、その求核剤の塩基としての作用はその影響を受けにくいので(E2の反応機構を考えてください)、事実上、塩基としての作用が優先して脱離(E2)が起こります。
それに対して、弱い塩基(あるいは求核剤)を用いた場合、基質が第三級ハロゲン化アルキルであればSN2は起こりませんし、E2を起こすほどの強い塩基は存在しませんので、カルボカチオンが生じる反応が重要になってきます。カルボカチオンが生じれば、SN1反応が起こりますが、それの副反応としてE1が起こります。E1がカルボカチオン中間体を経由していることをお忘れなく。この条件は加溶媒分解条件と呼ばれ、反応式に含まれるのは水やアルコールといった溶媒のみであり、NaOHなどは含まれません。反応条件として加溶媒分解条件が書かれていればSN1かE1であり、NaOH、NaOCH3などの強塩基(あるいは強い求核剤)が書かれていればSN2かE2です。特に脱離反応に関しては、E1とE2を区別するには反応条件を見るしかありません。

>また、E2反応で第三級の方が起こりやすいのは、求核試薬が攻撃できるプロトンがより多いため、という解釈であっていますでしょうか。
そうではないと思います。第三級ハロゲン化アルキルの方が炭素-ハロゲン結合が切れやすいからです。教科書によってはその結合エネルギーの差が記載されているはずです。このことには結合が切れて生じるカルボカチオンの安定性の差が反映されていることになります。


>(1)でなぜ求核性の低い試薬を用いたほうが反応が起こりやすいのでしょうか。
上述のように、求核性の高い試薬を用いるとE2やSN2が起こるからです。特にこの場合にはE2が問題になります。ただし、生成物がE1とおなじになることが多いので、生成物からの判別は困難ですけど。

まず、求核性と塩基性を分けて考えるべきです。置換反応を起こすのは求核剤としての作用であり、脱離を起こすのは塩基としての作用です。
ところが、通常、求核剤は塩基性を有しており、強い求核剤は塩基性も強い傾向があります。
つまり、第三級ハロゲン化アルキルに強い求核剤を作用させても、SN2型の反応は立体障害のために起こりませんよね?その一方で、その求核剤の塩基としての作用はその影響を受けにくいので(E2の反応機構を考えてください)、事実上、塩基としての作用が優先して脱離(E2)が起こります。
...続きを読む

Q窒素化合物の塩基性の強さ

窒素化合物の塩基性の強さのことなのですが、二トリル(RCN)、イミン(R’CH=NR)、アミン(RNH2)の3つを考える時、塩基性はこの順にだんだん強くなっていく理由を考えています。

とりあえず、アミンのNは、その非共有電子対が隣接するアルキル基に押し出されるため、電気的により-となり塩基性が強くなっているという事は分かりました。あとの2つのことは、二トリルの場合、シアノ基が電子求引基であるということが関係してきますよね!?イミンの場合は、よく分かりません。3つを比較した時の、考え方を教えて下さい。

Aベストアンサー

 
abt-594 さんの回答に少し補足します。

R-CN, R'-CH=NH, R"-NH2 の順でN原子は,sp 混成軌道,sp2 混成軌道,sp3 混成軌道をとっています。そのため,各軌道のs性はこの順で小さくなります。

s性が大きい程,電子は原子核に引きつけられた(相手,今の場合,H+,に電子を与えにくい)状態で存在します。逆に,s性が小さい程,電子を与えやすくなります。

ですので,この順で塩基性は強くなります。

 

Qヨウ素滴定の実験で

ヨウ素実験での質問なのですが、KIO3とNa2S2O3の作り方が違うのは何故なのですか??KIO3が一次標準液で、Na2S2O3が二次標準液だということは分かるのですがそこから先の詳しいことが分かりません。
あと、KIO3 + ヨウ化カリウム + 酢酸 の溶液にNa2S2O3をつかって滴定していくときに、なぜ淡黄色になってからデンプン溶液をいれて、さらに青色が消えるまで滴定するのは何故ですか??よかったら教えてください。

Aベストアンサー

ヨウ素酸カリウムは純度が高いものが作れる。吸湿性が少ない。チオ硫酸ナトリウムは吸湿性(潮解性)あるので秤量中に空気中の水分を吸い正確な秤量ができません。故に、ヨウ素酸カリウムを一次標準液とする訳です。また、ヨウ素酸カリウムの価格はチオ硫酸ナトリウムより高いので価格の安いチオ硫酸ナトリウム溶液を大量に作成できるので二次標準液とします。

でんぷん指示薬を終点間際に加えるのは
 最初からでんぷん指示薬を入れておくと溶液が酸性のためでんぷんがある程度加水分解されて分子量が小さくなり、終点間際のヨウ素でんぷん反応の発色が赤紫~赤になり見にくくなります。赤紫→無色の変化より青→無色の変化の方が見易いので溶液の色が淡黄色になってからデンプン溶液をいれます。

QE1反応とSn1反応

(CH3)2CHClとH2Oの反応の主生成物はSn1反応による(CH3)2CHOHで、(CH3)3CClとH2Oの反応の主生成物はSn1による(CH3)3COHとE1による(CH3)2=CH2であると本にかかれていました。なぜ第3級ハロアルカンではE1による生成物も主生成物になるんですか?第2級と第3級では何か違いがあるんですか?

Aベストアンサー

第3級ハロアルカンは、第2級のものに比べて不安定で、脱離反応を起こしやすいのです。

つまり、第3級ハロアルカンは反応の際にカルボカチオン中間体を経由します。
水分子が、そのC+を攻撃すればアルコールになりますが、その前に、カルボカチオンからH+がとれてしまえばアルケンになります。
カルボカチオンと言えども、第3級になるとC+のまわりが混雑してきますので、幾分、水の攻撃が起こりにくくなり、そのためアルコールを生成する前に、ある程度のH+がとれてアルケンになってしまうものと考えれば説明できます。
また、生成物の第三級アルコールが脱水反応を起こす可能性もあるかもしれません。

なお、誤解のないようにして欲しいのですが、SN1、E1ともに反応の律速段階はカルボカチオンの生成であり、それは第3級の場合に速くなります。上の段落で述べたのは、反応の後半の部分の話であり、全体の反応速度からすれば無視できるほど短い時間での話です。

Q安息香酸メチルのニトロ化について

有機化学の求核置換反応の実験で、安息香酸メチルのニトロ化で混酸を加えたとき黄色くなったのはどのような化合物ができているのですか?ちなみに混酸を作るとき温度が18度まで上がってしまいました。教えてください。

Aベストアンサー

> 安息香酸メチルのニトロ化で混酸を加えたとき黄色くなったのは
> どのような化合物ができているのですか?

 これは2つ考えられます。一つは,皆さんがお書きの 3,5-ジニトロ安息香酸メチル(methyl 3,5-dinitrobenzoate)の副生です。もう一つは,NO, NO2, N2O3 等の混入です。これらのガス(全てかどうかは忘れましたが)は黄色い色をしています。混酸作製時に温度が上がりすぎて,これらのガスが多量にできていると,反応生成物の結晶中に混ざり混で黄色い色を呈する可能性があります。

> 教授には温度が上昇しすぎたために

 この温度とはいつの温度でしょうか。後で述べますように,ニトロ化時の温度ならジニトロ体の可能性が高くなります。

> 水で結晶をよく洗えと言われました。

 これは何故だかわかりますか。実験のレポ-トだそうですので,簡単なヒントだけ。
 まづ,水で洗って除けるという事は溶解度が違うわけですね。モノニトロ体とジニトロ体のどちらが酸として強いでしょうか。強い酸の方が相手(今の場合水分子)に H+ を与えやすいですから,水に溶けやすいと考えられます。つまり,水洗で容易に除けます。
 酸の強さを考える場合,ニトロ基の効果はI(インダクティブ)効果やR(レゾナンス)効果はどう影響するでしょうか。


> 有機化学の求核置換反応の実験で

 この反応は「求核置換反応」ではありません。マイナス電荷を持った試薬(求核剤)がプラス電荷を攻撃しているわけではないからです。

 この反応では,ベンゼン環のπ電子に対して NO2(+) イオンが攻撃します(親電子攻撃)。結果としてできる化合物は,ベンゼン環の水素がニトロ基に置換(置換反応)された化合物です。つまり,この反応は親電子置換反応です。

 教科書の該当ヶ所を御覧になればわかるとは思いますが,ニトロ基はベンゼン環の電子を引っ張って,この反応を起こり難くします。したがって,通常ではジニトロ体はでき難いのですが,反応温度が高いと副生する可能性が高まります。

 いづれにしても,教科書の親電子置換反応や芳香環の反応性の辺りを参考になさって下さい。

> 安息香酸メチルのニトロ化で混酸を加えたとき黄色くなったのは
> どのような化合物ができているのですか?

 これは2つ考えられます。一つは,皆さんがお書きの 3,5-ジニトロ安息香酸メチル(methyl 3,5-dinitrobenzoate)の副生です。もう一つは,NO, NO2, N2O3 等の混入です。これらのガス(全てかどうかは忘れましたが)は黄色い色をしています。混酸作製時に温度が上がりすぎて,これらのガスが多量にできていると,反応生成物の結晶中に混ざり混で黄色い色を呈する可能性があります。

> 教授には...続きを読む

Qアキラルとは。

アキラルというものが解りません。辞書によると
キラルというのは像と鏡像が重なり合わないもので、
アキラルは像と鏡像が重なり合うらしいのですが、
(像と鏡像が)重なり合うと云う事は、おんなじ物質
というのと違うのでしょうか。

どなたか詳しい方がいらっしゃいましたら回答
宜しくお願いします。

Aベストアンサー

> アキラルというものが解りません。

 簡単に言えば,「キラルでないもの」をアキラルといいます。


> アキラルは像と鏡像が重なり合うらしいのですが、
> (像と鏡像が)重なり合うと云う事は、おんなじ物質
> というのと違うのでしょうか。

 はい,同じ物質です。よく使われる例に手袋があります。右手用(あるいは左手用)の手袋を鏡に写すと,左手用(右手用)になり,元の右手用(左手用)とは異なります。この様な場合を「キラル」と言います。

 一方,靴下の場合,右足(左足)用とも形が同じですので,右(左)足用の靴下を鏡に写しても同じ右(左)足用になります。この様に,鏡に写しても元と同じになる場合を「アキラル」と言います。

 「キラル」,「アキラル」と言う言葉は出てきませんが,下の過去質問「QNo.337088 光学不活性・・・」の ANo.#3 の回答とそこで紹介されている過去質問が参考になると思います。

参考URL:http://www.okweb.ne.jp/kotaeru.php3?q=337088

Q活性化エネルギーの求め方が分かりません

ある反応において、35℃における速度定数が25℃の2倍になったという。
この反応の活性化エネルギーはいくらか求めたいのですが、わかりません。
教えてください!

Aベストアンサー

ryota7さんがお答えのように『アレーニウスの式』を利用すれば計算できると思いますよ。

『アレーニウスの式』では速度定数をk、頻度因子をA,活性化エネルギーEa、気体定数R、温度T(絶対温度)、ネピアの定数をeとすると

K=A×eの(-Ea/RT)乗  つまりK=Ae^(-Ea/RT)となります。

ここで、25℃における頻度因子、活性化エネルギーは35℃におけるそれらと等しい(この温度間で変化しない)と仮定します。
そして、25℃の時の速度定数、K(25℃)と35℃の時の速度定数、K(35℃)の比を計算します。

K(35℃)/K(25℃)は、問題の設定から2倍ですから、

K(35℃)/K(25℃)=2=A(35℃)e^(-Ea/RT1)/ A(25℃)e^(-Ea/RT2)となります。

ここではT1は35℃に相当する絶対温度で35+273(k)T2は25℃に相当する絶対温度で25+273(k)です。
また、この式から分かるように頻度因子は約分されてしまいます。

両辺の自然対数(底が10の常用対数ではありません。常用対数を使うのならば換算しなければなりません。)をとると

ln2=(-Ea/RT1)-(-Ea/RT2)

Ea/Rは共通なので

ln2=(Ea/R)(1/T2-1/T1)となります。

ここへT1,T2、Rを代入すればEaは簡単に計算できます。

用いる気体常数の単位に気をつけてください。
私が学生の頃は旧単位系なので1.987を用いていました。

これを用いると計算結果はカロリーで出てきます。
それをキロカロリーに換算して用いていました。
現在はSI単位系つまりKJ/molでないといけないと思いますが、考え方自体は変わらないはずです。

ちなみに、ln2=0.693として計算すると12.6kcal/mol(旧単位系)となりました。

ryota7さんがお答えのように『アレーニウスの式』を利用すれば計算できると思いますよ。

『アレーニウスの式』では速度定数をk、頻度因子をA,活性化エネルギーEa、気体定数R、温度T(絶対温度)、ネピアの定数をeとすると

K=A×eの(-Ea/RT)乗  つまりK=Ae^(-Ea/RT)となります。

ここで、25℃における頻度因子、活性化エネルギーは35℃におけるそれらと等しい(この温度間で変化しない)と仮定します。
そして、25℃の時の速度定数、K(25℃)と35℃の時の速度定数、K(35℃)の比を計算します。

...続きを読む

Q共役or非共役の見分け方

有機化学や高分子化学の勉強をしているのですが、どういうものが共役で、どういうものが非共役のものなのか、いまいち確信をもって見分けることができません。
なんとなく電子がぐるぐる動いていて、二重結合の位置が常に変わっている(共鳴している?)もののことを共役系と言っている気はするのですが、具体的にどんな形をしたものとか、どんな構造が含まれていたら共鳴していると言うのかがよくわからないでいます。
非常に基礎的なところでつまずいてしまい、なかなか先に進めなくて困っていますので、ぜひご回答よろしくお願い致します。

Aベストアンサー

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同士がくっついてしまって、あたかも二重結合を形成しているかのようになってるんです。
このようにして、炭素4つのp軌道が全部くっついているので、電子は自由に行き来できるのです(非局在化と言います)。共役物質が安定なのはこのためです。

少し踏み込んだ説明をしましたが、わかって頂けましたでしょうか…?

参考URL:http://www.ci.noda.sut.ac.jp:1804/classroom/1998_6_18/Q&A6_18_4.html

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同...続きを読む


人気Q&Aランキング