[PR]ネットとスマホ OCNでまとめておトク!

数学 集合と写像の 過去問ですが、回答がないので困っています。
よろしくお願いします!
前回質問させていただきましたが、問題に打ち間違えがありましたので再度修正して
質問いたします。
ミスをご指摘いただいた方ありがとうございました。

X={3,4,5} Y={5,6,}とする。

(1) YからXへの単射を1つ求めよ。
(2) XからYへの全射を1つ求めよ。
(3) (1)(2)で求めた写像の合成写像を求めよ。
(4) XからXへの写像で全射であるものを全て求めよ。
(5) (4)で求めた写像 f で合成写像 f2=f○fが恒等写像となるものを全て求めよ。
(6) YからYへの写像で単射であるものを全て求めよ。
(7) (6)で求めた写像 f で合成写像 f3=f○f○fが恒等写像となるものをすべて求めよ。

 数学が うまく変換出来ませんでしたので、わかりにくいと思いますが、よろしくお願いいたします。

A 回答 (2件)

(1) 写像 f:Y→X が単射とは ∀y,y'∈Y(y≠y' ⇒ f(y)≠f(y'))となることです。

言葉で簡単に言うと、y∈Yのyが違えばその対応する値f(y)とf(y')も異なるということです。
 ですから、f(5)=3,f(6)=3 のような写像は単射ではないわけです。
(2) 写像 g:X→Y が全射とは(∀y∈Y)(∃x∈X) (g(x)=y)となることです。言葉で簡単にいうと、Yにすべての元が写像fによってxに対応しているということです。
 ですから、g(3)=5,g(4)=5,g(5)=5のような写像は全射ではないわけです。(Yの6がどれにも対応づけられていない)
(3) 写像f:A→B,写像g:B→Cが与えられているとする。ことのき、∀a∈Yに対して、集合Cの元cをg(f(a))で定めること。このとき、写像h=g○fで表す。
後は教科書等をしっかりよんで勉強してください。がんばって。
    • good
    • 0
この回答へのお礼

早速の回答ありがとうございます。
文系(商学部1年)の必修科目なのですが、まともな教科書がなく参考書を買おうかと思っていました。
出席もゆるく、ほとんどの人が、試験前にこのような状態です。
この期末で、終わるので単位が来るように 頑張ります。
また質問をする予定ですので、よろしくお願いいたします。
ありがとうございました。

お礼日時:2012/07/22 11:06

>Y={5,6,}   6の後にカンマが相変わらず入っています。

愛嬌としましょう。
(1)(2)(3)は単射・全射・合成写像の意味がお分かりなら自力でできるはずです。

(4) f:X→X が全射であれば、定義域と終域の元数が等しいので単射でもある。よってXの元1,2,3に対してXの元を並べ替えたものに対応させれば良いので、3!通りある。
  写像1:f(3)=3,f(4)=4,f(5)=5
  写像2:f(3)=3,f(4)=5,f(5)=4
  写像3:f(3)=4,f(4)=3,f(5)=5
  写像4:f(3)=4,f(4)=5,f(5)=3
  写像5:f(3)=5,f(4)=3,f(5)=4
  写像6:f(3)=5,f(4)=4,f(5)=3
(5) (4)のうちf2=f○fが恒等写像となるのは、写像1,2,3,6
(6) f:Y→Y が単射であれば、定義域と終域の元数が等しいので終域は値域となる。なので全射。結局(4)と同様に考えて、2!通りある。
  写像1:f(5)=5,f(6)=6
  写像2:f(5)=6,f(6)=5
(7) (6)のうちf3=f○f○fが恒等写像となるのは、写像1
    • good
    • 0
この回答へのお礼

再度にわたりご丁寧な回答をありがとうございました。

そして再度のミス入力申し訳ありませんでした。
それほど、理解度が低いのです。お恥ずかしい限りです。

ただ(1)(2)(3)もよく理解できていないのです。
できれば教えていただけないでしょうか?
よろしくお願いいたします。

お礼日時:2012/07/22 02:37

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q合成写像の証明問題

ゆうべずっと考えてもわからなかったので、どなたかヒントだけでも良いのでよろしくお願いしますm(_ _)m

(問題)
3つの写像をf:X→Y、g:Y→Z、h:Z→Wとする。g⚪︎fとh⚪︎gが全単射ならば、f、g、hはいずれも全単射であることを証明せよ。

この問題の、fの全射性とhの単射性の示し方がわかりません。

Aベストアンサー

あれ? これ, g は全単射になるんだっけ?

Q単射 全射 全単射 について教えてください

タイトルの通り、単射 全射 全単射についていまいち納得できないので教えてください。

今、手元に問題が5つあるのですが


自然数、整数、実数全体の集合をそれぞれN,Z,Rとする。

(1)f:Z→N f(x)=x2(二乗)
(2)f:R→R f(x)=2x(x乗)
(3)f:R→R f(x)=sinx
(4)f:Z→R f(x)=x3(三乗)
(5)f:R→R f(x)=2x+1

例えば、(1)であれば 
Zが1のとき、Nは1、Zが2のとき、Nは4という風にZが決定すればNはただひとつ必ず決まるから単射。
でも、Zが2のときは、Zは1とも-1ともいえるので全射ではない、ということなのでしょうか。
全単射、というのはそうするとどういった状態を言うのでしょうか・・・

それぞれの問題も全くちんぷんかんぷんです。
どうか教えてください。

Aベストアンサー

(1) f: Z→N, f(x) = x^2
 x = 1,-1 に対し f(x) はどちらも 1 ですから,単射ではありません.
 また N の元 2 に対する Z の元が存在しない (f(x) = 2 になるような整数がない) ため全射でもありません.
 
(2) f: R→R, f(x) = 2^x
 f(x) は単調増加ですから単射といえましょう.つまり x = 5 が与えられたら f(5) = 32 ですし,f(x) = 32 が与えられたらそのような x は 5 しかありません.
 また全射ではありません.R への写像となっていますが,f(x) = 0 や負になるような x がないからです.
 
(3) f: R→R, f(x) = sin x
 sin x は周期関数ですから,たとえば x = 0,π,2π,... と無限に多くの x に対し f(x) が同じ値になります.だから単射ではありません.
 また sin x は -1 から 1 の値しかとりませんから,R の上に全射でもありません.
 
(4) f: Z→R, f(x) = x^3
 f(x) が単調増加ですから単射です.つまり一つの f(x) に対してもとの x が二つ以上定まるということはありません.
 また f(x) = 2 なる x も Z にはないので全射でありません.
 
(5) f: R→R, f(x) = 2x +1
 全単射です.f(x) は単調に全実数をわたるから単射かつ全射です.

(1) f: Z→N, f(x) = x^2
 x = 1,-1 に対し f(x) はどちらも 1 ですから,単射ではありません.
 また N の元 2 に対する Z の元が存在しない (f(x) = 2 になるような整数がない) ため全射でもありません.
 
(2) f: R→R, f(x) = 2^x
 f(x) は単調増加ですから単射といえましょう.つまり x = 5 が与えられたら f(5) = 32 ですし,f(x) = 32 が与えられたらそのような x は 5 しかありません.
 また全射ではありません.R への写像となっていますが,f(x) = 0 や負になるような x がないからです.
...続きを読む

Q逆写像について

逆写像について質問です。
教科書で定義を見てもいまいち理解できません。
具体的な例を挙げます。

いま、A={a,b,c,d,e}とし、AからAへの写像fを
f={(a,c),(b,a),(c,d),(d,b),(e,e)}
とするとf^(-1)の値はどうなるか?

自分が考えたのは、単にそのまま逆にして
f^(-1)={(a,b),(b,d),(c,a),(d,c),(e,e)}
となるのではないかと思ったのですが、これで合っていますでしょうか?
逆写像の考え方等どなたか詳しい方は教えてください。
よろしくお願いします。

Aベストアンサー

定義は
写像f:X→Yの逆写像f(-1):Y→Xとは、y∈Yに対してf(x)=yとなるx∈X
を対応させる規則のことですね。

これはfが全単射でなくてはちゃんと定義できません。

たとえば
f:{a,b,c}→{a,b,c}

f(a)=a
f(b)=a
f(c)=b
などと定義すると、
f(-1)(a)はaとbの2つ
f(-1)(b)=c
f(-1)(c)はない
などとなって、f(-1)が定義できません。
これは、fが単射でも全射でもないからです。

また、
f:{a,b,c}→{a,b,c,d}

f(a)=a
f(b)=b
f(c)=c
と定義すると、
f(-1)(a)=a
f(-1)(b)=b
f(-1)(c)=c
f(-1)(d)はない
となって、f(-1)は定義できません。
これは、fが単射ではあるが、全射ではないからです。

しかし、単射ではあるが、全射ではない写像f:X→Yに関して、
f(-1)の定義域をf(X)に限定すれば逆写像がちゃんと定義できます。

また、f(-1)の逆写像はもとのfになります。

集合XとYの間に全単射f:X→Yが定義できるときにXとYは対等といって、
X~Yなどと書きます。XとYが有限集合なら、XとYの要素の個数が等しいときのみ可能です。

XとYが無限集合でも、たとえば、
X:自然数全体の集合、Y:偶数全体の集合
として、f(n)=2nと定義すると、fは全単射で、X~Yであり、
f(-1)(2n)=nで逆写像はちゃんと定義できます。
すなわち、XもYも無限の度合いが同じということです。

また、X:自然数全体の集合、Y:有理数全体の集合
としても全単射f:X→Yがちゃんと定義でき、X~Yです。
すなわち、有理数全体の集合は1、2、3、・・・と番号付けを
することができます。
(これは最初は不思議で、ちょっと難しいですが、数学者カントール
の考えた方法で、本当です。)

しかし、X:自然数全体の集合、Y:実数全体の集合とすると、
全単射f:X→Yは定義できないので、X~Yではありません。
すなわち、実数全体の集合は無限の度合いが自然数全体の集合より
高いということで、1、2、3、・・・と番号を付けてすべてを数
え上げることはできません。

逆写像を考えるときは、定義域、値域をしっかり念頭に置くことが
肝心です。

どのレベルの方かわからないので、いろいろ書いてしまいました。
(ほとんど集合の教科書に書いてあると思いますが。)

定義は
写像f:X→Yの逆写像f(-1):Y→Xとは、y∈Yに対してf(x)=yとなるx∈X
を対応させる規則のことですね。

これはfが全単射でなくてはちゃんと定義できません。

たとえば
f:{a,b,c}→{a,b,c}

f(a)=a
f(b)=a
f(c)=b
などと定義すると、
f(-1)(a)はaとbの2つ
f(-1)(b)=c
f(-1)(c)はない
などとなって、f(-1)が定義できません。
これは、fが単射でも全射でもないからです。

また、
f:{a,b,c}→{a,b,c,d}

f(a)=a
f(b)=b
f(c)=c
と定義すると、
f(-1)(a)=a
f(-1)(b)=b
f(-1)(c)=c
f(...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q大学数学(集合)の証明

A差集合(B ∩C) =(A差集合B)U (A差集合C)
の証明を補助定理を使って証明してください
できれば説明もお願いします

差集合はキーボードで出なかったので
文字で書きました

Aベストアンサー

こんな流れかなぁ。

その「補助定理」を使うなら、

【 A - (B ∩ C) ∋ a とする】

・差集合の定義から、A と a の関係がわかる。(1)
・差集合の定義から、(B ∩ C)と a の関係がわかる(2)
・(2) から、B と C の少なくともどちらかには、a が含まれてないことがわかる(3)
・(1) と (3) から、A - B と A - C の少なくともどちらかには、a が含まれていることがわかる。

以上、「補助定理」の一方がいえた。

【(A - B)∪(A - C) ∋ a とする】

・和集合の定義から、A - B と A - C の少なくともどちらかには、a が含まれることがわかる。(2)
・(2) から、A と a の関係がわかる。(3)
・(1) と差集合の定義から、から、B と C の少なくともどちからには、a が含まれないことがわかる(3)
・(3) から、B ∩ C には、a が含まれないことがわかる(4)
・(2) と (4) から、A - (B ∩ C)と a の関係がわかる

以上、「補助定理」の他の一方がいえた。

こんな流れかなぁ。

その「補助定理」を使うなら、

【 A - (B ∩ C) ∋ a とする】

・差集合の定義から、A と a の関係がわかる。(1)
・差集合の定義から、(B ∩ C)と a の関係がわかる(2)
・(2) から、B と C の少なくともどちらかには、a が含まれてないことがわかる(3)
・(1) と (3) から、A - B と A - C の少なくともどちらかには、a が含まれていることがわかる。

以上、「補助定理」の一方がいえた。

【(A - B)∪(A - C) ∋ a とする】

・和集合の定義から、A - B と A - C の少なくともどちらかには、a ...続きを読む

Q卒業検定に落ちた人!

卒業検定に落ちた人!
(ペーパー試験じゃなくて、実技の方)

どの理由で落ちたか教えてください。
あと10日程で、卒業検定です。
参考にさせてください。

Aベストアンサー

一般的なことは,皆様が書かれている通りです
自分は一発合格でしたが
私の卒業した学校であった,変わったエピソードがあります
参考まで

交差点手前でで一台のトラックが止まっていたのですが
検定車5台の内,先頭の運転手が信号待ちと判断
トラックの後ろに停止,残り4台も同様に停止しました
ところが,トラックは信号待ちではなく
交差点近くの電話ボックスで電話する為に停車していただけだった
検定者は誰も気付かず教官に指摘された
ところが,車間距離が近すぎて,免許所持者なら切り返しで
抜けられるところ,未熟なため列から抜け出せず
全員が100点原点で不合格になった(実話ですよ)

ポイントは状況判断ミスと走行不能による検定中断になったため
一般的なことは皆様書かれているようなことで
おそらく,質問者様もある程度予測できていることも
あると思います
上のような,予測不可能な事態に巻き込まれたとき
如何に判断して抜け出せるかだと思います

運とか,こういう場面に出くわす確立とか
ありますが,平常,冷静を保つことが大事です!!

一般的なことは,皆様が書かれている通りです
自分は一発合格でしたが
私の卒業した学校であった,変わったエピソードがあります
参考まで

交差点手前でで一台のトラックが止まっていたのですが
検定車5台の内,先頭の運転手が信号待ちと判断
トラックの後ろに停止,残り4台も同様に停止しました
ところが,トラックは信号待ちではなく
交差点近くの電話ボックスで電話する為に停車していただけだった
検定者は誰も気付かず教官に指摘された
ところが,車間距離が近すぎて,免許所持者なら切り返し...続きを読む

Q全射の総数

|X|=4、|Y|=3であるとき、写像f:X→Yで全射になる写像の総数はいくらか

この回答は36なのですが、考え方が良くわかりません、誰か教えてください、お願いします

Aベストアンサー

 
  この問題に関しての回答でよいということなら記します。
 
  XとYは、要素の差が1しかありません。これがもっとたくさんだと、計算が複雑で解きにくいのですが、ここでは、差1なので、順列組み合わせの考え方を使います。
 
  Yの要素は3個ですから、これを三つの位置と考え、この位置に、Xの四つの要素を入れて行くことにします。この場合、Xの要素のどれか二つが、Yの同じ位置に入ることになります。そこで、Xの要素から二つを組み合わせる可能性の数を考えると、それは4・3で12ですが、これは順列でないので、2で割ると6が出てきます。
 
  Xの四個の要素のなかで、二つを選ぶと、残りの二個は自動的に決まります。つまり、6通りに分けて、それぞれ要素が違う三つの要素があると考えてよいのです。こう言っても分かりにくいかも知れませんから、具体的に、その6通りを以下に書いてみます。X={a,b,c,d}とします。
 
  ケース1){(a,b),c,d}
  ケース2){(a,c),b,d}
  ケース3){(a,d),b,c}
  ケース4){(b,c),a,d}
  ケース5){(b,d),a,c}
  ケース6){(c,d),a,b}
 
  これら6個のケースは、すべて要素が違う集合と考えても構いません。Yの三つの要素の位置に、これら6ケースごとで、三つの要素を入れて行く(対応させて行く)ことを考えると、これが、X→Yの全射になります。6個のケースで、三つの要素の順列を入れ替えても、6個のケースで、同じ、重複した順序はできません。
 
  従って、Yの三つの位置に対する順列を取ると、3・2・1=6で、これと、ケースの数6をかけると、6・6=36になり、これが、答えです。
 
  注記)六個のケースの三つの要素(二つの要素の組み合わせで、一つの新しい要素を造っていることに注意)の順列をどう入れ替えても、6個のケース全体で、同じ重複した組み合わせはできないというのがポイントです。「二重要素」を定義しているので、重複が排除されるのです。
 

 
  この問題に関しての回答でよいということなら記します。
 
  XとYは、要素の差が1しかありません。これがもっとたくさんだと、計算が複雑で解きにくいのですが、ここでは、差1なので、順列組み合わせの考え方を使います。
 
  Yの要素は3個ですから、これを三つの位置と考え、この位置に、Xの四つの要素を入れて行くことにします。この場合、Xの要素のどれか二つが、Yの同じ位置に入ることになります。そこで、Xの要素から二つを組み合わせる可能性の数を考えると、それは4・3で1...続きを読む

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む

Q逆写像の求め方

以下の逆写像を求めなさい。
定義域と値域はどちらも実数です。
1.f(m)=4m+6
関数の逆写像を求める場合は、n=4m+6をmについて解けば良いのでしょうか?
n-6=4m, m=(n-6)/4。したがって、f^-1(m)=m/4-3/2?で宜しいでしょうか?
2.f(m)=m^3-2
上のやり方が正しければ同様にn=m^3-2, n+2=m^3。mの3乗ってこの先どうにか出来るんでしたっけ。。すみません、逆写像の質問ではなくて数学の基礎なのかも知れませんが、ご存知の方いらっしゃったら教えて下さい。
あと、逆写像は、y=xの線を隔てて対称的な線を描く、という認識は正しいでしょうか。

Aベストアンサー

こんにちは。

>>>
1.f(m)=4m+6
関数の逆写像を求める場合は、n=4m+6をmについて解けば良いのでしょうか?
n-6=4m, m=(n-6)/4。したがって、f^-1(m)=m/4-3/2?で宜しいでしょうか?

それでいいです。
逆関数です。


>>>
2.f(m)=m^3-2
上のやり方が正しければ同様にn=m^3-2, n+2=m^3。mの3乗ってこの先どうにか出来るんでしたっけ。

3√(n+2) と書けばよいです。実数のみですからね。
(n+2)^(1/3) とも書けます。
です。


>>>
あと、逆写像は、y=xの線を隔てて対称的な線を描く、という認識は正しいでしょうか。

そうですね。
関数だったら、そうなります。

Q上極限、下極限が理解できません

大学で習っているのですが、limsupやliminfなどが定義を見ても、どういう意味なのか理解できません。

上界、下界、上限、下限については例があったので、なんとか理解することができました。


X={1,2,3}⊆Zのとき、下界の1つとして0がとれる。

こんな感じで、簡単な例つきで説明して下さると、理解できると思うのですが・・・。
よろしくお願いします。

Aベストアンサー

上極限

sin(n)で考えましょう。nは自然数です。
sin(n)は振動しているので極限はないけど、
「nが大きい時(というか初めからだけど)1を超えることはない」
「1付近の値を何回も(無限回)とる」
から1が上極限です。
ことばでいえば、
「ずっと先のほうでは、上極限の値より大きくならない」
(極限の意味でです。∀ε>0に対し上極限+εより大きくならないってことです)



この例では下極限はー1ですね。

(sin(n)-1)*n の場合だと、
上極限は0で、下極限は「なし」(-∞)となりますね。


人気Q&Aランキング