いわゆるゼータ関数のζ(2)の値

Σ1/(n^2)= π^2/6

は、どのようにして導くのでしょうか。
たしか sin の無限乗積展開をつかったような記憶が
あるのですが.....。

A 回答 (1件)

http://oshiete1.goo.ne.jp/kotaeru.php3?q=76142
の回答で shushou さんが書かれているように
(1)  sin x / x = Π(n=1~∞) {1-x^2/(n^2 π^2)}
ですね.
右辺の無限乗積をばらして,x^2 の項を集めると
(2)  Π(n=1~∞) {1-x^2/(n^2 π^2)}
    = 1 - (x^2/π^2){1 + 1/2^2 + 1/3^2 + ・・・ } + (x^4 以上の項)
になります.右辺第2項の{ }内がちょうどζ(2)です.
左辺をxで展開すれば
(3)  sin x / x = 1 - (1/3!)x^2 + (x^4 以上の項)
ですから,(2)(3)で x^2 の項の係数を比べて
(4)  ζ(2) = π^2/6
が得られます.

他には,Fourier 級数を利用する方法もあります.
(5)  f(x) = x^2
を -1≦x≦1 で Fourier 展開すれば
(6)  x^2 = 1/3 + (4/π^2) Σ(n=1~∞) {(-1)^n / n^2} cos(nπx)
になります.
(6)で x=1 とおくと,右辺のΣのところがちょうどζ(2)になって,
簡単に(4)が得られます.
同様に,x^4 の Fourier 級数展開から
(7)  ζ(4) = π^4/90
がわかります.
なお,(7)は(2)の右辺で x^4 の項を調べても得られます.
    • good
    • 0
この回答へのお礼

なるほど分かりました。
フーリエ展開でもできるんですね。知らなかったです。
ありがとうございました。

お礼日時:2001/05/16 14:29

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QΣ[k=1..∞](-1)^(k+1)/k^2=π^2/12において,|π^2/12-s(n)|<10^-4となる為のnの大きさは?

皆様、宜しくお願い致します。下記の問題でたいそう難儀しております。

[問]与えられたΣ[k=1..∞](-1)^(k+1)/k^2=π^2/12において,|π^2/12-s(n)|<10^-4
となる為にはどのくらい大きい自然数nが選ばれねばならないか決定せよ。
但し,s(n)はこの級数のn項迄の部分和を表す。

という問題なのですがこれはどのようにして解けばいいのでしょうか?

Aベストアンサー

全部答えるとルール違反なので方針だけ。

Σ[k=n+1..∞](-1)^(k+1)/k^2

の絶対値が 10^(-4) よりも小さくなる条件を求めればよい。

Qsin^2(x)sin(2x)の0からπ/2の範囲での積分について sin^2(x)sin(2x)

sin^2(x)sin(2x)の0からπ/2の範囲での積分について

sin^2(x)sin(2x)の0からπ/2の範囲での積分がどうしても解けず、困っています。
わかる方がいらっしゃいましたら、計算過程も含め、教えていただけないでしょうか?

Aベストアンサー

No.1です。
さっきの
<sin^2(x)={1―cos(2x)}/2の公式をつかって、cos(2x)sin(2x)の積分はsin(2x)=tとおいて
置換積分しよう。>
は誤りではないけど、
<sin^2(x)={1―cos(2x)}/2の公式をつかって、cos(2x)sin(2x)はさらに{sin(4x)}/2 と変形しよう>
のほうがよりやりやすい。ごめんなさい(汗)。

Q数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1...続きを読む

Aベストアンサー

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでしょうか?
質問の文に
『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。』
とあったのでf(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)と表せる前提で話をして良いのかなと思ったのです。
また、f∈R[0,π]の関数を周期[-π,π]で展開することも可能なので一概に周期[0,π]とも言えないと思うのです。
(ただし、その場合にも偶関数として展開、奇関数として展開などの適当な前提は要りますが)


どうやら私が質問や問題の内容を推測して回答してしまったのがよくなかったようですね。
今回は補足要求と言うことにしておきます。

・今回の問題(2)の題意は
  fがa_0/2+Σ[n=1..∞]a_ncos(nx)で書けることを示すことですか?
それとも
  f(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)とするとa_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dxとなることを示すことですか?

・『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数』とはこの場合どういう意味でしょう?把握してらっしゃいますか?

・fを展開する際の周期ですが本当に[0,π]ですか?
[0,π]ではcos(nx)とsin(mx)が直交しないですし、
f(x)=Σ{b_n*sin(nx)}と奇関数として展開するしか出来ない気がするんですが。

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでし...続きを読む

Qe^π=i^(-2i)から-ilogi=π/2を導いた場合・・・

右辺のπ/2は直角と何か関係があるのでしょうか。又左辺も何か直角と関係があるのでしょうか。

Aベストアンサー

複素数zの対数は、
log(z) = log|z| + iArg(z)
になります。(これを定義とする流儀もある)
したがって、zの偏角がもろにでてきます。
右辺のπ/2は、iの偏角を表していますね。

ちなみに、普通の複素平面では、log(z)は多値関数です。
log(i) = iArg(i) = i(π/2+2nπ)
なので(n:整数)、
-ilogi = π/2+2nπ
です。つまり無限個の値を取ります。
決して
-ilogi = π/2
ではないので注意。

QParsevalの等式と指示された関数を使ってΣ[k=1..∞]1/(2k-1)^2とΣ[k=1..∞]1/k^2の和を求めよ

[問] (1) 直交系{sin(nx)}は[0,π]で完全とする。Parsevalの不等式は
Σ[n=1..∞](b_n)^2=2/π∫[0..π](f(x))^2dxとなる。但し
,b_n=2/π∫[0..π]f(x)sin(nx)dx
(2) Parsevalの等式と指示された関数を使って次の級数の和を求めよ。
(i) Σ[k=1..∞]1/(2k-1)^2,f(x)=1
(ii) Σ[k=1..∞]1/k^2,f(x)=x


で(2)の求め方が分かりません。
b_n=2/π∫[0..π]1・sin(nx)dx=2/π∫[0..π]sin(nx)dx=2/π[-1/ncos(nx)]^π_0=4/(nπ)
Σ[n=1..∞](b_n)^2=2/π∫[0..π]f(x)^2dx=2/π∫[0..π]1dx=2/π[x]^π_0=2/π・π=2

となったのですがこれからどうすればいいのでしょうか?

Aベストアンサー

偶関数だからというより、nが偶数のとき
 b_n = 2/π∫[0..π] sin(nx)dx
は n/2周期にわたる積分になるので0です。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報