基礎論の入門書にある問題が解けません。解答がついていないので、教えてもらえればありがたいです。
 問題だけを挙げても意味不明になりそうなので、少し前のところから、なるべく丸写ししたいと思います。
 以下、問題です。よろしくお願いします。


<に関する帰納法(正則性の公理と同等)

 (注! 記号が自由にならないので、「yはxの元(要素)である」をy<x、全称量化記号(Aを逆さまにしたやつ)をAと表記します)

 数学において帰納法といえば、普通は自然数に関する帰納法をいう。

 <に関する帰納法というのは、集合にも同じような性質があったほうがよいという要請を公理の形で書いたものである。

 <に関する帰納法とは次のようなものである。

      Ax(Ay<xA(y)→P(x))→AxP(x)

 つまり自然数に関する帰納法はn-1について成り立つならばnでも成り立つとき、すべての自然数でも成り立つということであるが、<に関する帰納法はy<xとなるすべてのyで成り立つならばxでも成り立つとき、すべての集合でも成り立つということを述べている。

問題
 自然数に関する帰納法では0で成り立つことがはじめに必要であるが、<に関する帰納法ではこのようなものがない。なぜか考えよ。

 ヒント:命題論理でp→qのpがF(=偽)ならば、この式はいつでもT(=真)であることを思い出せ(そして、x<φの真偽値がFであることも)。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

いちおうもうちょっと補足。



「xが集合Aに含まれるならば、(ほにゃらら)である」
というのが集合の元に対する命題です。
で、Aが空集合なら、「xが集合Aに含まれる」は常に偽です。
    • good
    • 0
この回答へのお礼

 回答、ありがとうございます。まず、ちょっと訂正させてください。

 何と、式が間違っていました。<に関する帰納法は、

   Ax(Ay<xA(y)→P(x))→AxP(x)

ではなく、

   Ax(Ay<xP(y)→P(x))→AxP(x)

です。記号を置き換えるときに間違ってしまいました。

 hogehogeninjaさんに回答していただいたのは、xが空集合のとき、Ay<xP(y)は恒真になるということだと思います。そういうことであれば、そこまでは分かりました。その上でもう少し聞きたいのですが、xが空集合のとき、Ay<xP(y)が恒真になることと、<に関する帰納法に(自然数に関する帰納法の)P(0)に相当するようなものがないこととは、どのように結び付くのでしょうか?

お礼日時:2001/05/18 01:20

ヒントに書いてありますが、空集合では、空集合に含まれる元についての言及はどんなことも真です。



つまり、集合の元に対するどんな述語も、空集合については常に真です。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qあまのじゃくってどういう意味ですか?

あまのじゃくってどういう意味ですか?

Aベストアンサー

かっこつけたり、恥ずかしがったりして、自分の感情や思いをうまく表現できないこと。天邪鬼。

参考URL:http://ja.wikipedia.org/wiki/%E3%81%82%E3%81%BE%E3%81%AE%E3%81%98%E3%82%83%E3%81%8F

Aベストアンサー

y=1のときにはzは存在しないので1<zとする。
x,yは互いに素なので整数a,bが存在して
ax+by=1・・・(1)
もし整数A,Bについて
Ax+By=1・・・(2)
ならば(1)-(2)より
(a-A)x+(b-B)y=0
よってa-Aはyで割りきれるからnを整数として
a-A=ny
とかける。nを任意に選んでも
B=nx+b
とすれば(2)を満たす。
A=a-ny
であるから0≦A<yで有るようにnを適当に選びAを一意に決定できる。
ただしA=0とするとBy=1となり矛盾するので
0<A<yで有るようにnを適当に選びAを一意に決定できる。
そのときのAをzとおく。
すると
zx+By=1
であるから
xz/y=1/y-B
であり、よって
xz/yの小数は1/yである。
zx+By=1かつ0<z<y
を満たすzは一意だからzを上記以外に決定したときはBを適当に選び
k=zx+Byかつ1<k<yとなる。
このとき
xz/y=k/y-B
となり
xz/yの小数はk/yとなりいずれも1/yより大きい。

y=1のときにはzは存在しないので1<zとする。
x,yは互いに素なので整数a,bが存在して
ax+by=1・・・(1)
もし整数A,Bについて
Ax+By=1・・・(2)
ならば(1)-(2)より
(a-A)x+(b-B)y=0
よってa-Aはyで割りきれるからnを整数として
a-A=ny
とかける。nを任意に選んでも
B=nx+b
とすれば(2)を満たす。
A=a-ny
であるから0≦A<yで有るようにnを適当に選びAを一意に決定できる。
ただしA=0とするとBy=1と...
続きを読む

Qどういう意味だと思いますか?

彼とLINEしていると
「返事がおくれてごめん、あまのじゃくなもので・・・」と
返事がありました。

たわいもないことをLINEでやりとりしているのですが

あまのじゃくになるというのは・・・
回答に困って返事が遅れるという意味でしょうか?

Aベストアンサー

返事が早かったり遅かったり、気まぐれだということじゃないですか?

遅れてごめんと謝ってくるところが全くあまのじゃくだとは思いませんけどね。

Q材料力学(数学)の問題です。 0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-a

材料力学(数学)の問題です。

0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-ax+3abである関数のグラフを描け。a、bは正の定数とする。
この問題の解き方を教えて下さい。わかりやすく解説してくだされば有難いです。

Aベストアンサー

0<x<bでy=ax
これは単なる比例です。aが正の定数なので、0を通る右上がりの直線ですね。

b<x<2bでy=ab
a,bが定数なので、abも定数です。
x=bの時「y=ax」=「y=ab」であるので、
y=axのx=bにおけるyから横一直線ですね。

2b<x<3bでy=-ax+3ab
これは最初の比例のグラフと傾きが正負逆になっていますね。
x=2bの時y=-2ab+3ab=ab、
x=3bの時y=-3ab+3ab=0
となる右下がりの直線ですね。

x=0,b,2b,3bは範囲外となります。
グラフを描く時に境界部分で○とするか●とするか間違わないように。

Q「あまのじゃく」に相当する英語は?

和英辞書を引いてみますと、色々な英語が出て来ます。
perverse or cussed person; contrarian とか。
それらの英語を逆引きすると、「つむじ曲がりの」とか「意固地な」とかの日本語になって、本来の日本語の意味の「あまのじゃく」に相当しません。

皆がこう言ったらいつも反対あるいは、別のことを言いたがる人。あるいは、何かが評判になったりして、多数の人がそこに殺到する時、その風潮に絶対に乗ろうとしない人。

私が捉えている「あまのじゃく」ですが、こんな性格の人は英米圏には殆んどいないから、それに相当する英語がないと言うことでしょうか?
もし、近い英語があれば教えて下さい。

宜しくお願いします。

Aベストアンサー

 yes-man, yes-sayer(はいはいと言うことを聞く人)の対義語、no-man, no-sayer(違う違うとごねる人)が近いだろうと思います。

Qx, y∈Rとするとき、条件「x>y⇒x^2>y^2」が成り立つ点(x, y)の集合を図示せよ。

x^2≦y^2 を(x-y)(x+y) ≦0 と変形する。
x>yの場合より、両辺をx-y>0で割ると
x+y≦0
∴y≦-x
x>y であって, しかも y≦-x であるような点の集合は、
x≦0、つまり,y軸の左側(y軸を含む)では、直線 y=x より上側(この直線も含む)
x>0、つまりy軸の右側では直線 y=-x より上側(この直線は含まず)

いつもお世話になります。
上記のように解いたのですが、説明不足でしょうか?
不自然な点、補足した方がよい点をご教授下さい。

Aベストアンサー

まず方針を書くべき。
でないと
>x^2≦y^2 を(x-y)(x+y) ≦0 と変形する。
が意味不明。

'x>y であって, しかも y≦-x であるような点の集合は、'

'x>y かつy≦-x であるような点の集合をxy座標から除くと、'
とすれば次の行で述べられた領域につながる。
つまり日本語が不自然。

Qあまのじゃくな男性

中学生男子に
あまのじゃくな人は結構いますか?

あと中学生男子は
普通に女子の肩に触れたりは
するもんですか?

回答お願いします(*´∇`*)

Aベストアンサー

中学生はあまのじゃくが多い年代でしょう。

女の子に対し興味が無いようなふりをしたり、悪態をついたり。

肩に触れるのはある程度親しいしるしだと思います。

Qあまのじゃく・・・

なんとなく、あまのじゃくな性格です。
この性格ってどうしてこうなるの?
解決する方法とかありますか?

Aベストアンサー

同じくあまのじゃくです(笑)
#1さんのおっしゃること、確かに当たってるような気が・・・。
私は最近は、思わず言い返してしまっても
後で家に帰ってから反省をするようにしています(笑)
あまり役に立つか分かりませんが
参考程度に読んでおいていただけるとありがたいです。

Q任意の実数x,yについて、g(x+y)+g(x-y)>=2g(x)が成り立つ事について教えて下さい。

塾の先生からも「わからんわぁ」で一蹴されてしまった問題その2です。
「解法を検討しなさい」って時点で、答えがあるかどうかもわかりませんが、判る方、ぜひ教えて下さい。

問題:次の問題の解法を検討しなさい
f(x)=1-sin x に対し、g(x)=∫[x→0] (x-t)f(f)dtとおく。
このとき、任意の実数x,yについて、g(x+y)+g(x-y)>=2g(x)が成り立つ事を示せ。

※数式の書き方に迷ってしまい、上記の様に記載しました
 もっと判りやすい書き方があれば、書き方も教えてください。
 よろしくお願いします。

Aベストアンサー

#3です。
A#3について
>>g(x+y)+g(x-y)>=2g(x)
>も不等号の向きが逆ですから問題の間違いでしょう。
これについては

>> g(x)=∫[x→0] (x-t)f(t)dtとおく。…f(f)はf(t)で置換え済
の積分の範囲の書き方が、常識と逆に書いて見えるなら、
積分の上限と下限を逆にすれば、g(x)の符号が反転しますので
不等式が成立するようにするには
g(x)=∫[0→x] (x-t)f(t)dt
と訂正すればいいでしょう。
(この本来の書き方では、積分の下限が0,積分の上限がxと捕らえるのが常識です。)


人気Q&Aランキング