人気マンガがだれでも無料♪電子コミック読み放題!!

(1)2平面 z=0、z=2-y と円柱面 x^2+y^2=4 で囲まれる部分の体積

(2)3つの座標平面 z=0、y=0、x=0 と平面 z=2-2x-y で囲まれる4面体の体積

(3)半球面 z=√(a^2-x^2-y^2) とxy平面で囲まれる部分の体積(a>0)


という問題なのですが

どうやって解けばいいのか
分かりません。

土曜日テストなので教えていただきたいです。

このQ&Aに関連する最新のQ&A

体積」に関するQ&A: 体積の比較について

A 回答 (1件)

テストならある程度自力努力が必要です。


体積を求める立体の図を描いて積分の式を立てるようにすれば積分の式や範囲に間違いが起こらないでしょう。

なので、ヒントとして、累次積分(逐次積分)による体積の表現のみにしておきます。

(1)
体積V=∫∫∫{0≦z≦2-y,x^2+y^2≦4} dxdydz
 =2∫∫{x^2+y^2≦4} (2-y)dxdy
 =2∫[-2→2]dy∫[0→√(4-y^2)] (2-y)dx
または
 =2∫[0→2] dx∫[-√(4-x^2→√(4-x^2)](2-y)dy

(2)
体積V=∫∫∫{0≦z≦2-2x-y,0≦x,0≦y} dxdydz
 =∫∫{0≦x≦1,0≦y≦2-2x} (2-2x-y)dxdy
 =∫[0→1]dx∫[0→2-2x] (2-2x-y)dy
または
 =∫[0→2] dy∫[0→1-(y/2)] (2-2x-y)dx

三角錐なので積分すれば V= 2/3 となるはず。

(3)
体積V=∫∫∫{0≦z≦√(a^2-x^2-y^2),0≦x^2+y^2≦a^2} dxdydz (a>0)
 =4∫∫{0≦x,0≦y,0≦x^2+y^2≦a^2} √(a^2-x^2-y^2)dxdy
 =∫[0→a] dx∫[0→√(a^2-x^2)] √(a^2-x^2-y^2) dy
または
 =∫[0→a] dy∫[0→√(a^2-y^2)] √(a^2-x^2-y^2) dx
(極座標に座標変換すると良い。)

半径aの半球の体積なので V= (2/3)πa^3 となるはず。

あとは、ご自分でやってみてください。
解答を補足に書いてもらえればチェックします。
    • good
    • 1

このQ&Aに関連する人気のQ&A

体積」に関するQ&A: 体積・容積の違いって?

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q重積分により体積・面積を求める問題

(1)放物面z=x^2+y^2とz=4-x^2ーy^2で囲まれる体積を求めよ
以上のような問題において図形的にどちらの関数が上にくるのかいまいち判別できません。
平面上の関数なら概形や位置関係がわかるのですが・・・

(2)上半球面x^2+y^2+z^2=1、z>0、z=√3/2
範囲Dをx^2+y^2+z^2<=1/4と求めてからさっぱりわかりません。
最初の式をf(x、y)z=√1-(x^2+y^2)、さらにg(x、y)=√3/2としても
困難な計算になるため正しい方法とは思えません。
どなたか知恵をお貸しください。

Aベストアンサー

続いて(2)について

>「上半球面x^2+y^2+z^2=1、z>0、z=√3/2」で囲まれた立体の体積Vを求めれば良いですね。
立体は半径1の半球をz=√3/2の平面で切断し、上側をそぎ落とした残りの部分の立体となります。
これもz軸を中心とした回転体の体積で求まります。

>範囲Dをx^2+y^2+z^2<=1/4と求めてからさっぱりわかりません。
この範囲をどこから出したのか、さっぱり分かりません。

立体をy=0の平面(xz座標面)で切断した座標面で考えると
回転体の体積公式を使って
 V=π∫[0,√3/2] x^2 dz , ただし x^2+z^2=1
V=π∫[0,√3/2] (1-z^2) dz
この位の積分は出来ますね。やってみて下さい。
 ( → V=3(√3)π/8 )

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q極座標による重積分の範囲の取りかた

∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2)
を極座標でに変換して求めよ。

という問題で、

x = rcosθ、y = rsinθ とおくのはわかるのですが、
rとθの範囲を、どのように置けばいいのかわかりません。


x^2+y^2
= (rcosθ)^2 + (rsinθ)^2
= r^2{(cosθ)^2 + (sinθ)^2}
= r^2< = π^2

とした後、-π =< r =< π としたのですが、合っているのでしょうか?
rとθの範囲の取りかたを教えてください。お願いします。

Aベストアンサー

Dは原点中心の半径πの円盤なので、
0≦r≦π、0≦θ<2πです。(-π<θ≦πでもよいです。
等号もどっちにつけても良いです)

ちなみに極座標ではr≧0です。

極座標は原点からの距離rと、x軸とのなす角θを使った点の表示
方法です。

Q重積分を使って曲面積を求める問題でわからないところがあります。

重積分を使って曲面積を求める問題でわからないところがあります。
球面x^2+y^2+z^2=a^2の円柱x^2+y^2=axで切りとられる部分の曲面積を求めよ(a>0)
自分の解法は
 z(>0)について解いてz=√(a^2-x^2-y^2),積分領域D:x^2+y^2<=axの上にある曲面積を2倍して
Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より
求める曲面積s=2∬D √(1+Zx^2+Zy^2)dxdy
ここでx=rcosθ,y=rsinθと置くとJ=r,積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2
S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ
=2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、解答は
D:x^2+y^2<=a^2,y>=0の上にある曲面積を4倍して求めていて、
S=4∫∫D a/√(a^2-x^2-y^2)dxdy
ここでx=rcosθ,y=rsinθと置いて、M:0<=r<=acosθ,0<=θ<=π/2
S=4∫(0→π/2)∫(0→acosθ)r/√(a^2-r^2)drdθ
=4a^2[θ+cosθ](0→π/2)=4a^2(π/2-1)

となって答えが違ってしまうのですが、何故だかわかる方がいたら助けてください。

重積分を使って曲面積を求める問題でわからないところがあります。
球面x^2+y^2+z^2=a^2の円柱x^2+y^2=axで切りとられる部分の曲面積を求めよ(a>0)
自分の解法は
 z(>0)について解いてz=√(a^2-x^2-y^2),積分領域D:x^2+y^2<=axの上にある曲面積を2倍して
Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より
求める曲面積s=2∬D √(1+Zx^2+Zy^2)dxdy
ここでx=rcosθ,y=rsinθと置くとJ=r,積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2
S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ
=2a^2[θ+cosθ](-π/2→π/2)=2a^2π ...続きを読む

Aベストアンサー

>Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より
間違い。
Zx=-x/√(a^2-x^2-y^2), Zy=-y/√(a^2-x^2-y^2)

>求める曲面積S=2∬[D] √(1+Zx^2 +Zy^2)dxdy
>ここでx=rcosθ,y=rsinθと置くと|J|=r,
>積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2
>S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ
S=2∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ
=2a∫(-π/2→π/2)[-√(a^2-r^2)](r:0→acosθ)dθ
=2(a^2)∫(-π/2→π/2)(1-|sinθ|)dθ

>=2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、
間違い。√(1-(cosθ)^2)=|sinθ|とすべき所を =cosθとして間違った。
=2(a^2)∫(-π/2→π/2)(1-|sinθ|)dθ
偶関数の対称区間での積分なので
=4(a^2)∫(0→π/2)(1-sinθ)dθ
=4(a^2)[θ+cosθ](θ:0→π/2)
=4(a^2){(π/2)-1}
これは解答と一致しています。

>解答は
>D:x^2+y^2<=a^2,y>=0の上にある曲面積を4倍して求めていて、
>S=4∫∫D a/√(a^2-x^2-y^2)dxdy
>ここでx=rcosθ,y=rsinθと置いて、M:0<=r<=acosθ,0<=θ<=π/2
>S=4∫(0→π/2)∫(0→acosθ)r/√(a^2-r^2)drdθ
>=4a^2[θ+cosθ](0→π/2)=4a^2(π/2-1)

>となって答えが違ってしまう
θ:-π/2~π/2のとき
√{1-(cosθ)^2}=|sinθ|
上のθの範囲ではsinθは正にも負にもなります。それを単に「sinθ」としてしまったのが
間違いの原因ですね。
θ<0では √{1-(cosθ)^2}=-sinθ
θ>0では √{1-(cosθ)^2}=sinθ
としないといけません。

>Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より
間違い。
Zx=-x/√(a^2-x^2-y^2), Zy=-y/√(a^2-x^2-y^2)

>求める曲面積S=2∬[D] √(1+Zx^2 +Zy^2)dxdy
>ここでx=rcosθ,y=rsinθと置くと|J|=r,
>積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2
>S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ
S=2∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ
=2a∫(-π/2→π/2)[-√(a^2-r^2)](r:0→acosθ)dθ
=2(a^2)∫(-π/2→π/2)(1-|sinθ|)dθ

>=2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、
間違い。√(1-(cosθ)^2)=|sinθ|とすべき所を =cos...続きを読む

Q二重積分の意味について

こんばんわ。
いま大学1年なのですが、微積で二重積分∬というものを計算していて思ったのですが、この∬はx方向とy方向の双方向から積分していて今までやってきた積分を二回しているのと同じで、果たして意味があるのか?と思いました。

初めは教科書を見ていたら二重積分は立体の体積を求めているのかと思えば、三重積分で立体を求めていたので「??」となってしまいました。
どなたか簡単な例などを交えて二重積分の意味(図形のどこを求めているのか)を教えてください。m(__)m

Aベストアンサー

積分を使って曲線で囲まれた面積を求めるとき
平面図形をたくさんの細い帯に分けて考えますよね

これは例えばx方向の幅を細かくして面積をたくさんの長方形(帯)の集まりとして考えているのです

二重積分も同じことで曲面で囲まれた立体の体積を求めるのに使います
立体図形のx方向,y方向の幅を細かくし、立体を細長い柱の集まりとして考えるのです

ではなぜ三重積分でも体積が求まるかというと
それは先ほどの細い柱をさらに縦に細かく切って
立体を細かい立方体の集まりと考えるからです

体積だけなら二重積分で十分な場合も多いのですが
立体の質量を求めるとき密度が一様でなかったら
(二重積分における細い柱の真ん中と端っこが違う素材で出来ているような場合は)
立体をさらに細かくして、狭い範囲では密度が一定と考え質量を求めるのです

もし微積分の教科書を持っているならたいていのものには
二重積分で体積を求めるイメージをわかりやすくグラフや図で説明してあると思います、探してみるのもいいとおもいますよ

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q球と円柱の共通部分の体積

「原点を中心とする半径Rの球x^2+y^2+z^2=R^2と半径R/2の円柱x^2+y^2≦Rxの共通部分の体積を求めよ。」
この問題ののアプローチが分かりません。
どういう状態なのかをイメージすることができますが、具体的に計算で体積を求めるにはどういった解法を用いるのか、ひらめきません。
分かる方、指南よろしくお願いいたします。

Aベストアンサー

体積Vは、共通部分は、底面[D] x^2+y^2≦Rx、0≦y、でz方向に0→√(R^2-x^2-y^2)だから、
V=∫∫[D] √(a^2-x^2-y^2) dxdy

極座標変換すると、
x=rcosθ=(R/2)+(R/2)cos(2θ)
y=rsinθ=(R/2)sin(2θ)
r=√(x^2+y^2)=√{(R^2/2)+(R^2/2)cos(2θ)}=Rcosθだから、
r:0→Rcosθ、θ:0→+π/2、dxdy=rdrdθ より、
V/4=∫[0→π/2] dθ∫[0→Rcosθ] √(R^2-r^2) rdr
=(1/3)∫[0→π/2] {R^3-R^3(sinθ)^3}dθ=(1/3)(π/2-2/3)R^3
4倍して、
V=(4/3)(π/2 -2/3)R^3
={(2/3)π-(8/9)}R^3

(参考URL)以下の過去の質問でa→Rと置き換えて下さい。
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1354059158

参考URL:http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1354059158

体積Vは、共通部分は、底面[D] x^2+y^2≦Rx、0≦y、でz方向に0→√(R^2-x^2-y^2)だから、
V=∫∫[D] √(a^2-x^2-y^2) dxdy

極座標変換すると、
x=rcosθ=(R/2)+(R/2)cos(2θ)
y=rsinθ=(R/2)sin(2θ)
r=√(x^2+y^2)=√{(R^2/2)+(R^2/2)cos(2θ)}=Rcosθだから、
r:0→Rcosθ、θ:0→+π/2、dxdy=rdrdθ より、
V/4=∫[0→π/2] dθ∫[0→Rcosθ] √(R^2-r^2) rdr
=(1/3)∫[0→π/2] {R^3-R^3(sinθ)^3}dθ=(1/3)(π/2-2/3)R^3
4倍して、
V=(4/3)(π/2 -2/3)R^3
={(2/3)π-(8/9)}R^3

(参考URL)以下の過去の質問でa→Rと置き換えて下さい。
http://...続きを読む

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q円柱と円の方程式

円柱と円の方程式

円柱の方程式を調べてみたところ、

x^2+y^2=1

と分かりました。
しかし、これは、半径1の円の方程式ではないのでしょうか?

また、x^2+y^2=x というようなものも発見しました。
これも円柱の方程式なのでしょうか?

よろしくお願いします。

Aベストアンサー

こんばんわ。

x^2+ y^2= 1に加えて
・「z= 0」や「z= 1」や「xy平面上において」などとあれば、円になります。
・特に、何も書かれてなければ、zはなんでもよいことになるので、無限に長い円柱(円筒?)になります。
・「0≦ z≦ 5」などと書かれていれば、高さが 5の円柱になります。

空間図形を考えるときには、x, y, zの 3つの座標を考えることになりますから、何も書かれてなければ自由に値をとっていいことになります。

ただし、座標の値は実数ですから、x^2+ y^2+ z^2= 1(半径 1の球)といった場合には、何も書かれてなくても取り得る値に制限がかかります。
(実数であることがある意味制限ですね。)

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む


人気Q&Aランキング