【復活求む!】惜しくも解散してしまったバンド|J-ROCK編 >>

標準得点がなぜX~N(0,1)の分布になるのかが理解できません。
なんとなくですが、計算式 "(X-平均)/標準偏差"から、標準得点とは
「"平均から値Xの差"が標準偏差のどれくらいの割合か」
という意味だろうなぁと理解してます。
しかし、なぜこの計算式の結果が、平均が0、標準偏差が1の分布になるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

> 式展開を教えてもらえませんか?



Σx[i]/n=m
Σ(x[i]-m)^2/n=s^2
であれば
Σ((x[i]-m)/s)/n
=(Σx[i]/n-Σm/n)/s
=(m-m)/s
=0
Σ((x[i]-m)/s-0)^2/n
=Σ((x[i]-m)/s)^2/n
=Σ(x[i]-m)^2/n/s^2
=s^2/s^2
=1
    • good
    • 2
この回答へのお礼

ちゃんとはまだ理解できてませんが、
色々な教科書を見ても証明がかかれてなかったので
非常に気になってました。
有難う御座いました。

お礼日時:2013/02/14 08:59

平均0,分散1 になるように変換したものだからです

    • good
    • 0

Σx[i]/n=m


Σ(x[i]-m)^2/n=s^2
であれば
Σ((x[i]-m)/s)/n=0
Σ((x[i]-m)/s-0)^2/n=1
ですね。

この回答への補足

Σ((x[i]-m)/s)/nが0になるまでと、
Σ((x[i]-m)/s-0)^2/nが1になるまでの
式展開を教えてもらえませんか?

補足日時:2013/02/09 16:07
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q標準化とは?

標準化というと、平均を0、標準偏差1とする と説明されています。
そして正規分布にしたがって計算することを学んでいます。

例えば平均170センチであれば
185-170、それをσで割る公式があります。

平均を0とするのに170で引く行為は理解できます。
しかしそこから導いた値15をσで割るということがどうしても理解できません。

割るという行為は 1あたりの平均を出す と理解していますが・・・・
σで割るということがしっくりきません。
どなたか宜しくお願い致します。

Aベストアンサー

> 割るという行為は 1あたりの平均を出す と理解していますが・・・・

計算は、「意味」で考えちゃ駄目です。
恣意的な解釈は、誤解や混乱のもとにしかなりません。
定義を確認して、淡々と計算しましょう。

正規分布 N(μ,σ^2) の定義は、確率密度関数が
( 1/√(2πσ^2) )・e^( -(x-μ)^2 / (2σ^2) )
であることです。確率変数 X が、この確率密度を持つとき、
計算してみると、X の平均は μ、標準偏差は σ になります。

そのような X に対して、Z = (X-μ)/σ と置くと、
Z は確率密度関数 ( 1/√(2π) )・e^( -x^2 / 2 )
を持つ確率変数になります。
つまり、Z は正規分布 N(0,1) に従う訳です。
N(0,1) のことを「標準正規分布」と呼ぶのでした。

単純な変数変換の話です。
解釈論や哲学論の出番はありません。

Q母平均の検定と推定・・・対応の「ある」「なし」の使い分け

母平均の推定や検定において、対応の「ある」場合と「ない」場合の使い分けが分かりません。
たとえば、ある製品の部位Aと部位Bの厚みを比べるような場合は、対応が「ある」のだと思いますが、同じ部位をメーカーの異なる2つの装置でそれぞれ測定した場合、対応は「ある」のでしょうか?「ない」のでしょうか?

Aベストアンサー

「対応のある」方法は、個々のデータに比べたい相手がはっきり決まって
いるときに使います。これは、対になったデータの差を1系列のデータと
みなして、その平均がゼロであるかどうかを検定しているのです。この方法
が使えるかどうかは、データを対にすることの「もっともらしさ」で決まり
ます。

例えば、あるダイエット法に効果があるかどうか調べるときに、20人の
人間にそのダイエット法をやってもらい、前後の体重を量るとします。
このとき、同じ人間の前後の体重差を1つのデータとして扱うことは非常に
もっともらしいでしょう。このようなとき「対応のある」検定方法を使い
ます。

「対応のない」方法は、2つのデータ系列をA、Bと呼ぶと、A全体の
平均値とB全体の平均値が同じといえるかどうかの検定です。上の
ダイエットの例をこの方法で検定することは間違いではありませんが、
ダイエット効果による体重差が、20人の体重のバラツキの中に埋もれて
しまって、検出しずらくなります。


>同じ部位をメーカーの異なる2つの装置でそれぞれ測定した場合

これは2つの測定装置の差を見たいわけですよね。全く同じ物を測った
結果を比較するのが最もいいでしょうから、「同じ物の同じ部位」を
測定したデータを対にするのはもっともらしいと言えるのではないで
しょうか。すなわち、「対応のある」方法がよさそうです。


>ある製品の部位Aと部位Bの厚みを比べるような場合は

これは、「同一物」の部位Aと部位Bが同じ厚さになっていて欲しいと
いう要件があれば、「対応のある」方法がふさわしいでしょう。いや、
そこまでは求めない、製品群全体として部位Aの平均と部位Bの平均
が同じになれば構わない、程度ならば「対応のない」方法でも差し支え
ないでしょう。

edogawaranpo さんがお書きになったように、データを取るときから
「対応」を意識しなければなりません。どれとどれが対応するか分から
なくなってしまったら、「対応のない」方法を使うしかありません。

「対応のある」方法は、個々のデータに比べたい相手がはっきり決まって
いるときに使います。これは、対になったデータの差を1系列のデータと
みなして、その平均がゼロであるかどうかを検定しているのです。この方法
が使えるかどうかは、データを対にすることの「もっともらしさ」で決まり
ます。

例えば、あるダイエット法に効果があるかどうか調べるときに、20人の
人間にそのダイエット法をやってもらい、前後の体重を量るとします。
このとき、同じ人間の前後の体重差を1つのデータとして扱う...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Qこの言葉遣いは正しいですか?

志望動機を書く際に、
「~だと思ったので志望しました。」という表現は適切ですか?
思った"ので"というところが、少し気になります。
思ったため、とか感じたため、の方が良いのでしょうか。

Aベストアンサー

こんにちは。

採用などで多く志望理由など拝見してきた者に過ぎません。

NO1の回答者の方の通りかとおもいました。

同じように前の部分が分からないので断言できませんが「○○と思い志望しました」や「○○と考え志望しました」など数えあげればキリがない面もあるかと思います。

「○○と思い志望に至った次第です」など書き方も考え出すと入れ替えなどによりいくらでも変えることはできると思います。

しかし、あまりその程度の違いで合否や印象に大きく影響を及ぼすことではないと思いますし、肝心なのは内容かと思います。

字数制限などがあると思いますので「○○と思い志望致しました」など簡潔な方が無難かと思います。

参考程度にでもなれば幸いです。

Q回帰分析におけるデータの正規化の意味

重回帰分析をプログラム作成することを考えています。
しかし、データの正規化について疑問が2つあります。

まず一つは、例えば、画像の解析をする場合にデータの正規化をすることは、
ノイズを除去したり、画像の向きを正しくすることを意味しますよね。
しかし、回帰分析においてデータの正規化をすることは何を意味しているのでしょうか?
画像のように見てイメージがわけばよいのですが、数値データなのでどういう意図があるのかよく分かりません。


2つ目の疑問です。
また、データを正規化して重回帰分析をしたとします。
↓の重回帰分析を例に挙げます。
http://homepage2.nifty.com/crop_shimane-u/multipleregression_excel.htm
この例では、入力として年平均気温、降水量、日照時間とし、出力を単収としています。
このときデータを正規化せずに解析し、次のような予測式を推定しています。
 水稲単収=713.932-17.336×年平均気温+0.010666×降水量+0.017851×日照時間 ・・・ @
この場合に、正規化していないので新しいデータとして、例えば、
 年平均気温=14.8、降水量=2431、日照時間=1721 ・・・ (*)
から単収を推定したいとき、上記@の回帰式に代入することで単収を計算して推定できます。(1)

しかし、データを正規化(平均が0、分散が1になるように)した場合、入力と出力のデータが0以上1以下の値しかとらなくなるので、
重回帰によって上記@のように予測式が得られてもその予測式の出力は0以上1以下の値しかとらないことになり、
新しいデータ(*)をそのまま予測式に代入しても正しい単収を推定できないのではないかと考えています。
この場合のように、データを正規化して得られた予測式で(1)のように正しく単収を推定するにはどうしたらよいのでしょうか?

長くなりましたが、回答よろしくお願いします。

重回帰分析をプログラム作成することを考えています。
しかし、データの正規化について疑問が2つあります。

まず一つは、例えば、画像の解析をする場合にデータの正規化をすることは、
ノイズを除去したり、画像の向きを正しくすることを意味しますよね。
しかし、回帰分析においてデータの正規化をすることは何を意味しているのでしょうか?
画像のように見てイメージがわけばよいのですが、数値データなのでどういう意図があるのかよく分かりません。


2つ目の疑問です。
また、データを正規化し...続きを読む

Aベストアンサー

問1
正規化をすると、単位に引きずられず偏回帰係数によってその因子の影響を比較評価できるようになります。
たとえば、mmとcmと単位を変えたとき、mmで式を作ると「降水量」が大きな偏回帰係数を持ち、「降水量」の影響が大きく見えます。正規化してみれば、各因子の係数が、「寄与率」のように比較できます。
正規化して重回帰分析を行ったときの係数を「標準偏回帰係数」といいます。多くの解析ソフトは、両方を表示します。

問2
ご質問者の誤解です。
平均を0、分散を1までは正しいです。
データはおおよそー3から3くらい(ー3σから+3σ)になっているはずです。なぜ、正値しか考えないのですか? 負値もとります。
正規化(基準化,標準化ともいいます)した場合の予測値は、しない場合と同じ値を与えないと間違いです。

問3
もし、手持ちのルーチンが正値しか扱えないのなら、学力試験の偏差値のように(50,10)(偏差値といいます)にしても良いかもしれません。

Q「いずれか」と「いづれか」どっちが正しい!?

教えて下さいっ!
”どちらか”と言う意味の「いずれか」のかな表記として
「いずれか」と「いづれか」のどちらが正しいのでしょう???

私は「いずれか」だと思うんですが、辞書に「いずれか・いづ--。」と書いてあり、???になってしまいました。
どちらでもいいってことでしょうか?

Aベストアンサー

「いずれか」が正しいです.
「いづれ」は「いずれ」の歴史的かな遣いですので,昔は「いづれ」が使われていましたが,現代では「いずれ」で統一することになっていますので,「いずれ」が正しいです.

Q対数変換する意味?

私は数学が苦手な文系大学生です。最近「地域分析」という本を読んでいるのですが、たびたび数式を「対数変換すると・・・」と言う風に話が進みます。対数変換をすることの意味がわからないので内容が理解できません。

まず、対数変換とは何なのか?対数変換を行なうと何がどのように変わるのでしょうか?
また、一般的に対数変換とはどのような目的で行なわれるのでしょうか?

ということを文系の学生にわかりやすく教えていただけないでしょうか。
対数変換の内容を理解していないため、質問が的を得ていないかもしれませんが、よろしくお願いします。(また、ここで説明できるような内容でなければ、その旨をお伝えください。)

Aベストアンサー

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

このように表現すると、正の数値で1以下の小数から
万や億などの非常に大きい値に散らばる数値サンプルを
整理したり表現するのに非常に便利です。

また、対数にしてグラフを作ると、上記のように非常に
大きな数(または0.00000・・・・のように非常に小さい数)
を限られた紙面上でプロットする事ができます。
もしそのプロットした結果が直線になった場合、
その直線の傾きでサンプルの近似式を導き出すこともできます。

具体的例を挙げると、身近なものではpH値。
これはある液体の単位量あたりどのくらい水素イオンが
含まれるかを対数表現したものです。
(厳密には、モル濃度で表した水素イオン濃度の逆数の常用対数)

まとめると、対数は小数から数万・億などの広範囲に散らばる
数値を整理するために使われる道具とお考えになられたら
良いと思います。

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

この...続きを読む


人気Q&Aランキング