外出自粛中でも楽しく過ごす!QAまとめ>>

※つい先ほど、質問させていただいた
偏微分方程式 (∂^2 u)/(∂x∂y)=0
http://okwave.jp/qa/q8116262.html
の続き(後半)です。
また、先週、質問させていただいた
「偏微分方程式 (∂^2 u)/(∂x^2)=0」
http://oshiete.goo.ne.jp/qa/8102140.html
にも関連しています(ややこしくて、すみません)。

u を x と y の関数として、次の偏微分方程式の解 u(x,y) の形を求めよ。

(∂^2 u)/(∂x∂y)=0

模範解答
(∂/∂x)(∂u/∂y)=0 であるから、

     ∂u/∂y = φ(y)
     (φ(y)はyの任意の関数)

である。したがって、

     u = ∫φ(y)dy + θ(x)     ←これに至るまでの過程が分かりません
      = φ_1(y) + θ(x)
     (θ(x), φ_1(y)はそれぞれxおよびyの任意の関数)

となる。

・・・と本に書いてあります。
u = ∫φ(y)dy + θ(x) に至るまでの過程が分かりません。

上記の「∂u/∂y = φ(y)
     (φ(y)はyの任意の関数)
である。」以降を自分なりに解いてみますと:

次に
     (∂/∂y){y・φ(y)} = φ(y)
となることを活かして
     ∂u/∂y = (∂/∂y){y・φ(y)}
と変形する。これを移項して
     ∂u/∂y - (∂/∂y){y・φ(y)} = 0
     (∂/∂y){u - y・φ(y)} = 0
w = u - y・φ(y)とおけば
     ∂w/∂y = 0
となるので、例題の(1)式(http://oshiete.goo.ne.jp/qa/8102140.html参照のこと)と同様にして
     w = θ(x)
     (θ(x)はxの任意の関数)
u - y・φ(y) = wと戻すと
     u - y・φ(y) = θ(x)
     u = y・φ(y) + θ(x)
(θ(x), φ(y)はそれぞれxおよびyの任意の関数)

・・・となりました。
どのタイミングでu = ∫φ(y)dy + θ(x)にしないといけないのか、
そして、たとえ∂u/∂y = φ(y)の両辺をyで積分したとしても、
なぜいきなりθ(x)が出てきたのか分かりません。

ちなみに本の模範解答のφ_1(y)って、
φ(y)をyで掛けようが割ろうがyの任意の関数であることには変わりはないので、
もしかして私が出した答えのy・φ(y)と同じ意味でしょうか?

いろいろ質問してすみません。どうか教えて下さい。お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

>「∂u/∂y = φ(y) (φ(y)はyの任意の関数)である。



>u = ∫φ(y)dy + θ(x)     
>←これに至るまでの過程が分かりません

過程などありません。
yについての不定積分だから
原始関数:∫φ(y)dy
に積分定数を加えただけです。yについての不定積分なので
xについての任意関数θ(x)が積分定数となります。
ただそれだけのことです。

>      = φ_1(y) + θ(x)
(θ(x), φ_1(y)はそれぞれxおよびyの任意の関数)>
上述の原始関数:∫φ(y)dyは積分形なので改めて
原始関数φ_1(y)で置き換えただけです。

>次に
>     (∂/∂y){y・φ(y)} = φ(y)
>となることを活かして
とはなりません。
(∂/∂y){y・φ(y)} = φ(y)+yφ'(y)
ですよ。
なので、あなたの折角の苦労も無駄でしたね。
    • good
    • 0
この回答へのお礼

理解できました!
yについての不定積分なので自動的にxについての任意関数θ(x)が積分定数になるんですね。
ということは、もしx, y, zの三次元になってyについての不定積分をしたら自動的に任意関数θ(x, z)が積分定数になっちゃうんでしょうね、きっと。

φ_1(y)は∫φ(y)dyを積分形じゃない形にした、という意味でしたか。私には積分形のままの方が分かりやすいです、たとえ任意の関数とはいえ。

遠回りをしていたようです。
でも、これからはお陰様で近道できそうです。(^^ゞ
ありがとうございました!

お礼日時:2013/06/03 09:39

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/


人気Q&Aランキング