
No.3ベストアンサー
- 回答日時:
それは、公式を中途半端に覚えているんですよ。
半角公式は、sin のものも、cos のものも、
cos の倍角公式を変形して作ります。
そのとき、二次方程式を解きますから、
半角公式には、二次方程式の解公式に由来する
±√ が残ります。値は二つ出るのです。
その内の、適切なほうを選ばないといけない。
cos(7/12)π を半角公式で…ということは、
(7/6)π を半分にして (7/12)π を作りましたね?
(7/6)π の一般角は (7/6)π+2nπ なので、
半分にすると (7/12)π+nπ になります。
n の偶奇で異なる角度になるので、
半角公式からは cos(7/12)π と cos(19/12)π が
セットで登場するのです。
どちらの値がどちらの cos かは、
角度の象限から cos の ± を判定して
区別する必要があります。
No.1
- 回答日時:
タイトルは加法定理なのに本文では半角の公式. いったいどっちなんだろう.
「答えは-になります。
しかし、
+になってしまいます。」
ってどういうこと? どういう計算をしてそうなったの?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- 工学 電気回路の三相交流についての問題を教えてください (1)Iaの大きさとEaとIaの位相差を求めよ。 2 2023/05/28 23:17
- 数学 【 数I 】 問題 aを定数とする。1≦x≦3において,xの 不等式ax+2a-1≦0・・・・・・① 2 2022/07/15 17:40
- 数学 微分方程式の初期値問題 1 2022/07/28 16:40
- 数学 極座標A(2,π/6)となる点を通り、OAに垂直な直線lの曲方程式を求めよ という問題を直交座標を利 1 2022/08/04 17:31
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
- 物理学 力学の微分の質問です。 答えを教えてください。至急です。 問題1ある軸の上を並進運動している物体の位 2 2023/01/31 15:10
- 物理学 物理基礎で、力学的エネルギーと動摩擦力のことを習ったのですが、 あらい斜面の下から物体を滑り上がらせ 2 2022/09/11 10:12
- 物理学 水平な床に敷いたじゅうたんの上に質量M, 半径aの球をおく。 ある瞬間から 一定の加速度αでじゅうた 5 2022/10/24 20:23
- 数学 数2Bの数列の問題です。 自分は、 まず数列 an=ar^(n-1)と置き こちらの問題の、y= の 1 2022/07/07 16:26
このQ&Aを見た人はこんなQ&Aも見ています
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。
-
【お題】甲子園での思い出の残し方
【お題】「球場の砂を持って帰る」はもう古いと思った高校球児が、甲子園で負けた際に、思い出に残そうと思って行ったこと
-
限定しりとり
文字数6文字以上の単語でしりとりしましょう
-
スタッフと宿泊客が全員斜め上を行くホテルのレビュー
スタッフも宿泊客も、一流を通り越して全員斜め上なホテルのレビューにありがちな内容を教えて下さい
-
かっこよく答えてください!!
あなたは今にも別れそうなカップルの彼女の恋愛相談に乗っています。
-
半角の公式を用いて、 tan7/12πの値を求めろ。 という問題、解説付きで教えて下さい! 至急お願
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
X5乗-1=0 の因数分解の仕方...
-
加法定理
-
長方形窓の立体角投射率
-
高校数学 三角関数
-
1+cosθをみると何か変形ができ...
-
三角形の面積の射影と方向余弦...
-
三角関数で、
-
正十二面体の隣接面が成す角度?
-
積分の問題です
-
【数学】コサインシータって何...
-
z^3=複素数 の1つの解をxとし...
-
箱で囲んでいる部分の変形につ...
-
cos2x=cosx ってなにを聞かれ...
-
cos60°が、なぜ2分の1になるの...
-
同値性の崩壊
-
三角関数の連立方程式の解き方
-
数学の質問です。 0≦θ<2πのとき...
-
関数の不定積分 sin2 x cos4 x ...
-
mgr(1+cosθ) の読み方を教えて...
-
[高1数学A 三角比の相互関係] ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cos(2/5)πの値は?
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
数学の質問です。 0≦θ<2πのとき...
-
積分
-
∮sinθcos^2θを置換積分なしで =...
-
複素数zはz^7=1かつz≠1を満たす...
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
複素数の問題について
-
三角関数で、
-
X5乗-1=0 の因数分解の仕方...
-
cosθやsinθを何乗もしたものを...
-
1/ a + bcosx (a,b>0)の 不定積...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
三角関数
-
cos2θ−3cosθ+ 2≧0の不等式を解...
おすすめ情報