[PR]ネットとスマホ OCNでまとめておトク!

三次元空間上でベクトルが一次独立であるための条件

なんとなく気になったのですがご教授お願いします。三次元空間に存在する2つの直交するベクトルは一次独立なのでしょうか?
3つの直交するベクトルの場合もお願いします

このQ&Aに関連する最新のQ&A

A 回答 (3件)

2つのベクトルが平行でなく0でないという定義は何次元でも同じです。



垂直なら平行でも0でもないですね。
3つの場合は、例えばvec{a}とvec{b},vec{a}とvec{c}が直交しても、vec{b}とvec{c}が平行のことがありまあすよね。
vec{a}=(1,0,0),vec{b}=(0,1,0),vec{c}=(0,2,0)が一例です。
もちろん、3本全てが互いに直交していれば、任意の2つのベクトルが直交しており、一次独立の条件を満たします。
    • good
    • 0

直感的には明らかですが、



ベクトルを全てデカルト座標の位置ベクトルで、
ゼロベクトルでは直交できないので、全てゼロベクトルではないとすると、

2個の場合、一次従属だと2個のベクトルが同じ向きか反対の向きになって
互いに直交ちないので矛盾。なので一次独立。

3個の場合、一次従属だと2個のベクトルがなす平面や直線の中に3個目の
ベクトルがあることになり、3個目のベクトルが2個のベクトルがなす平面や
直線に対して直交しないので矛盾。なので一次独立。

#あまり正確な表現ではないかも。
    • good
    • 0

空間が 3次元だろうと 1038次元だろうと, あるいはベクトルが 2本だろうと 726本だろうと「一次独立」の定義は同じ.



で何が問題になるのでしょうか?
    • good
    • 2

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q線形代数の一次従属、独立に関する問題

以下のような問題なのですが、一次従属と一次独立に関してはなんとなくわかったのですが、垂直ベクトルがからんだ場合の解き方が全く浮かびません。かなり低レベルな質問なのかもしれませんが、困ってます。よろしくお願いします。(数式記号が出せないのと英語の問題を自分なりに翻訳したので読みにくいかもしれませんがよろしくお願いします。)
【問題】
(1)
R3中のa,b,cというベクトル全てが0以外でかつ、a垂直ベクトル記号b,b垂直ベクトル記号c、a垂直ベクトル記号cの場合、a,b,cが一次独立であることを証明せよ。
(2)Rm中のベクトルa1...an全てが0以外でかつai垂直ベクトル記号aj でiとjが異なる時、a1...anが一次独立であることを証明せよ。

Aベストアンサー

問題自体は、背理法で証明できると思います。

たとえば、5次元で、ベクトルa,b,c,d,eがすべて0でなく、どの2つも互いに垂直である場合に、「a,b,c,d,eが一次独立でない」すなわち、あるスカラーP,Q,R,Sが存在して
e=Pa+Qb+Rc+Sd
となる、と仮定します。

互いに垂直という仮定から、内積は0、つまり
a・e=0, b・e=0, c・e=0, d・e=0
よって、(Pa+Qb+Rc+Sd)・e=0
すなわち、e・e=0
これは、eが0でないという仮定に反します。

あとは考えてください。
定義とか使っていい定理とかの限定はあるのでしょうか?

Q「0でない2つのVのベクトルu,vが直交⇒u,vは一次独立」の逆は成り立つ?

F線形空間Vに於いて,
0でない2つのVのベクトルu,vが直交⇒u,vは一次独立。
が成り立つと思います。

u,vが一次独立⇒u,vは直交。
は一般に成り立つのでしょうか?
成り立たないならばどんな反例がありますでしょうか?

Aベストアンサー

例えば(1,0,0),(1,1,0),(1,1,1)は基底をなしますね。
要するに、斜交座標が作れれば一次独立になるわけです。

直交座標は斜交座標の特別なものなので、
直交することは一次独立であることの十分条件。

Q1次独立・1次従属とは?

1次独立・1次従属とは何でしょうか。参考書であまりていねいに説明されてないので、よく分かりません。あまり重要な事柄ではないのでしょうか。
2つのベクトルa→,b→が1次独立 ならば a→≠0→
                     b→≠0→
                     a→平行b→ではない

とかいてありますが・・・・

教えてください。

Aベストアンサー

>あまり重要な事柄ではないのでしょうか。

とんでもない.
線形代数(高校ならベクトル)の中心概念です.
ただし,高校のベクトルの範囲ならば
わざわざ一次独立なんて言葉を出さないでも
議論できてしまうので,表に出てないだけです.

一次独立というのは

二つのベクトルa,bと係数k,lにたいして
k a + l b = 0 が成り立つならば
k=l=0 である

ということです
これはa=(a1, a2) b=(b1, b2)と書いたときに
連立方程式
k a1 + l b1 = 0
k a2 + l b2 = 0
の解が(k,l)=(0,0)となることを意味し
また
行列
a1 b1
a2 b2
の行列式が0ではないことを意味します
このように高校の(平面)ベクトルの範囲では
「連立方程式の言葉」や
「行列式の言葉」に簡単に直せてしまうので
あまり表立って出てこないのです

一次従属は「一次独立ではない」というのが定義です
これを書き下せば

同時に0とはならない適当な係数k, lを選べば
k a + l b = 0 とすることができる

ということになって,これは(平面)ベクトルの
言葉でいえばaとbが平行ということです
連立方程式の言葉でいえば
・解が無数に存在する
行列式の言葉でいえば
・行列式が0になる
ということになります.

一次変換まで考えたりして,
まだまだいろいろあるのですが,
高校のベクトル範囲なら
これくらいで十分でしょう

>あまり重要な事柄ではないのでしょうか。

とんでもない.
線形代数(高校ならベクトル)の中心概念です.
ただし,高校のベクトルの範囲ならば
わざわざ一次独立なんて言葉を出さないでも
議論できてしまうので,表に出てないだけです.

一次独立というのは

二つのベクトルa,bと係数k,lにたいして
k a + l b = 0 が成り立つならば
k=l=0 である

ということです
これはa=(a1, a2) b=(b1, b2)と書いたときに
連立方程式
k a1 + l b1 = 0
k a2 + l b2 = 0
の解が(k,l)=(0,0)となることを...続きを読む

Q一次従属の問題

「3個のベクトル
 A=(1,1,1)
 B=(1,-2,3) 
 C=(2,1,a) が1次従属であるためには,aはいくらでなければならないか。」

という問題が学校で出されましたが、さっぱりわかりません。
ぜひ、教えてください。お願いします。  

Aベストアンサー

【線形独立と線形従属の定義】
K上の線形空間Xの元 x1,x2,・・・,xn について、
 a1x1+a2x2+・・・+anxn=0
を満たす ak (k=1,2,・・・,n) が、
 a1=a2=・・・=an=0
だけであるとき、x1,x2,・・・,xn は線形独立(linear independent)、または、一次独立であるという。また、線形独立でないとき、線形従属(linear dependent)であるという。また、一般に、空集合φは線形独立であると定義する。

【問題】
3つのベクトル、
 A=(1,1,1)
 B=(1,-2,3)
 C=(2,1,a)
が線形従属であるとき、aの値を求めよ。

【解答】
3つのベクトル、
 A=(1,1,1)
 B=(1,-2,3)
 C=(2,1,a)
が、線形従属であるための条件は、
 xA+yB+zC=(0,0,0)
 (x,y,z)≠(0,0,0)
を満たす x,y,z が存在することである。
 xA+yB+zC
 =x(1,1,1)+y(1,-2,3)+z(2,1,a)
 =(x+y+2z,x-2y+z,x+3y+az)
 =(0,0,0)
より、
 x+y+2z=0 … (1)
 x-2y+z=0 … (2)
 x+3y+az=0 … (3)
(1)-(2)
 3y+z=0
 ∴ z=-3y … (4)
(1)×a-(3)×2
 (a-2)x+(a-6)y=0
 ∴ (a-2)x=(6-a)y … (5)
(イ)a=2であるとき
(5),(4),(1)から、
 x=0, y=0, z=0
(ロ)a≠2であるとき
(5)から、
 x=(6-a)y/(a-2)={-1+4/(a-2)}y … (6)
(4),(6)を(1)に代入すれば、
 {-1+4/(a-2)}y+y-6y={-6+4/(a-2)}y=0 … (7)
(あ)y=0であるとき
(4),(5)から、
 x=0, z=0
(い)y≠0であるとき
(7)から、
 -6+4/(a-2)=0
 ∴ a=8/3
以上より、a=8/3ならば、例えば、y=1のとき、(4),(6)から、
 x=5, z=-3
であるから、
 xA+yB+zC=5(1,1,1)+(1,-2,3)-3(2,1,8/3)=0
が成り立つ。ゆえに、
 a=8/3 … (Ans.)

参考URL:http://www4.justnet.ne.jp/~masema/linear_space.html

【線形独立と線形従属の定義】
K上の線形空間Xの元 x1,x2,・・・,xn について、
 a1x1+a2x2+・・・+anxn=0
を満たす ak (k=1,2,・・・,n) が、
 a1=a2=・・・=an=0
だけであるとき、x1,x2,・・・,xn は線形独立(linear independent)、または、一次独立であるという。また、線形独立でないとき、線形従属(linear dependent)であるという。また、一般に、空集合φは線形独立であると定義する。

【問題】
3つのベクトル、
 A=(1,1,1)
 B=(1,-2,3)
 C=(2,1,a)
が線形従属であるとき、aの値を求め...続きを読む

Q平面の交線の方程式

2平面の交線の方程式はどうやって求めるのですか?

例で適当に問題を作ってみたんで教えてください
x-y+3z-1=0,x+2y-z-3=0

どなたか教えていただけませんか?

Aベストアンサー

akatukinoshoujoさん、こんにちは。

>x-y+3z-1=0・・・・(1)
>x+2y-z-3=0・・・・(2)とおきましょう。
(1)(2)より、連立方程式を解いて、x、y、zをそれぞれどれか一つの文字で表していきます。

(1)×2 2x-2y+6z-2=0
(2)   x+2y-z-3=0
------------------------------これを足してみると
      3x+5z-5=0
      x=-5(z-1)/3・・・・(☆)

(1)   x-y+3z-1=0
(2)×3 3x+6y-3z-9=0
------------------------------これらを足し合わせると
      4x+5y-10=0
      4x=-5(y-2)
      x=-5(y-2)/4・・・・(★)

(☆)(★)より、yとzをxであらわせたので、つなげてみましょう。

x=-5(y-2)/4=-5(z-1)
もうちょっと整理すると、
x/5 =(y-2)/-4 =(z-1)/-3
となって、これは(0,2,1)を通り、方向ベクトルが(5,-4,-3)の
直線になることを示しています。


方程式が2つあるので、どれか一つの文字で表して、つなげてみるといいですね。
頑張ってください!!

akatukinoshoujoさん、こんにちは。

>x-y+3z-1=0・・・・(1)
>x+2y-z-3=0・・・・(2)とおきましょう。
(1)(2)より、連立方程式を解いて、x、y、zをそれぞれどれか一つの文字で表していきます。

(1)×2 2x-2y+6z-2=0
(2)   x+2y-z-3=0
------------------------------これを足してみると
      3x+5z-5=0
      x=-5(z-1)/3・・・・(☆)

(1)   x-y+3z-1=0
(2)×3 3x+6y-3z-9=0
------------------------------これらを足し合わせると
   ...続きを読む

Q3次元座標2点からの直線式の求め方

お世話になります。

3次元座標2点からの直線式(ax+by+cz=0)の求め方を教えて下さい。

2次元座標であれば、1つの傾きから算出できるのですが、3次元座標になると、X-Y平面、Y-Z平面での傾きの使い方がこんがらかってしまいます。
基本的な質問で申し訳ありませんが、よろしくお願い致します。

座標1 = (x1,y1,z1)
座標2 = (x2,y2,z2)

以上

Aベストアンサー

> 直線式(ax+by+cz=0)の求め方を教えて下さい。
3次元座標では(ax+by+cz=0)は原点を通る平面になり、直線の式ではありません。ax+by+cz=dは平面の一般式です。

2点を通る直線の式には公式があります。
以下のように簡単に導けます。
点(x1,y1,z1)を通り方向ベクトル(x2-x1,y2-y1,z2-z1)の直線ですから
媒介変数形式で
(x,y,z)=(x1,y1,z1)+t(x2-x1,y2-y1,z2-z1)
と成ります。
これを変形してすれば
(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)
と3次元座標の直線の式となります。

Q二平面の交線の方程式

二平面の交線の方程式

(1)二平面 x+2y-z-4=0 と x-y+2z-4=0 の交線の方程式を求めよ。
(2)(1)の交線と点(0,1,0)とを通る平面の方程式を求めよ。

解答よろしくお願いいたします。

Aベストアンサー

(1)x+2y-z-4=0
x-y+2z-4=0
をx,yの連立方程式として解くと
x=-z+4 (z=-x+4)
y=z
よって-x+4=y=z

(2) (-1,1,1)はこの交線の方向ベクトル
   (4,0,0)はこの交線上にあり,これと(0,1,0)を結ぶベクトル(4,-1,0)
   2つのベクトル(-1,1,1),(4-1,0)に垂直なベクトル(1,4,-3)を求めて,これが求める平面の法線ベクトル。
求める平面上の任意の点を(x,y,z)とすると,これと(0,1,0)を結ぶベクトル(x,y-1,z)は
(1,4,-3)と垂直より
x+4(y-1)-3z=0
∴ x+4y-3z-4=0

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q一次変換の証明

一次変換fと、fを表す行列AについてAの逆行列が存在すれば、
fによって直線:pベクトル=aベクトル+tdベクトル(dベクトルは0ではない)は、直線に移ることを証明せよ。

この問題を教えていただけませんか?

Aベストアンサー

おはようございます。

この問題が示している一番大事なポイントは「線形性」ですが、
証明自体のポイントは「逆行列の扱い」になります。

ベクトル:p→の fによる写像は、線形性により次のように表されます。
Ap→
= A(a→+ t*d→)
= Aa→+ t*Ad→

この変換されたベクトルについて、Ad→≠ 0→であれば直線を表すことが示されます。

d→≠ 0→かつ Ad→= 0→となるとき
Aが逆行列をもつとすると、A^(-1)Ad→= 0→より d→= 0→となりd→≠ 0→の条件に矛盾する。
よって、「d→≠ 0→かつ Ad→= 0→を満たす行列:A」は逆行列をもたない。
問題では「Aの逆行列は存在する」とあるので、Ad→≠ 0→であることが示されます。


補足として、
Aが逆行列をもたないとき、Ad→= 0→はベクトル:d→を零ベクトルに移す変換を表すこととなり、p→は直線を表さなくなります。
(実は固有値= 0のときであり、点への写像となる。)

Q3次元空間内の直線の方程式

3次元空間内の直線の方程式の一般形は何でしょうか?
私の考えでは、2つの平面が交わった線として表すのでは
ないかと思いますが、どうでしょうか?つまり

aX+bY+cZ+d=0
eX+fY+gZ+h=0

いかがでしょうか?

Aベストアンサー

2点A,Bを通る直線の式は、
Oを原点、直線上の任意の点をPとし、
OPベクトルをp,OAベクトルをa,ABベクトルをdで表したとき
p=a+td  (tは実数)
とかけます。

たとえば2点A(-1,-2,-3),B(4,5,6)を通る直線の式は
p=(x,y,z)としたとき
(x,y,z)=(-1,-2,-3)+t(5,7,9)
となります。x,y,zはtの1次式で表されているので
すべてをt= の形に直すと
(x+1)/5=(y+2)/7=(z+3)/9
となり、こんなふうに直線ABを表現することも可能です。

もちろんpromeさんの表現の仕方も直線を表す1つの方法です。


人気Q&Aランキング