利用規約の変更について

高校生です。 数学の自由研究で、正多面体の体積と表面積の関係を調べています。

球の体積の公式を微分するとその表面積になることから、同じプロセスを正多面体でも試してみました。
始めは上手くいきませんでしたが、一辺の長さをXととるのではなく、多面体の中心から面までの距離をXととることで、体積の微分から表面積を求めることができました。

これらの成り立つ理由として、数学の先生から、中心から面までの距離Xが極わずかに増加した場合に、体積の変化はおおよそ表面積と一致するからではないか、という意見をもらいました。

これを概念的にではなくて、数式を用いてなんとか証明したいのですが、なにかいい案はないでしょうか。


(ちなみに、正多角形の中心から辺までの長さをXとしたときも、面積を微分すると周の長さになりました。)

このQ&Aに関連する最新のQ&A

A 回答 (1件)

正多面体って, 5種類しかないよね.

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q体積を微分すると表面積になる立体の条件(大学の知識で)

大学の数学科を卒業した者です。

高校時代、半径rの球の体積をrで微分すると、表面積になることは数IIで習いました

そして、その次に一辺がrの立方体の体積をrで微分すると、表面積にはならないことも習いました。

そして今、一般の立体で体積を微分すると表面積になる立体の条件を考えています。立体をいくつかの場合に分けてみました。

(1)正多面体の場合・・・一辺をrとするのではなく、ある長さをrととることで、体積をrで微分すると表面積になることは発見しました。
例えば立方体では一辺を2rとすれば、成り立つ。

(2)回転体の場合・・・C1級関数y=f(x)(a≦x≦b)をx軸まわりに回転させてできる曲面積は
2π(|y|√(1+y^2)のa~bの積分)
だったので、これが回転体の体積をxで微分したものと一致すればよいのですが、条件が求まりません。(問題1)

(3)回転体でない立体の場合・・・何で微分するのかすら分からないので見当がつきません。(問題2)

ただ、いろいろな立体で試している中で、共通して見えてきたのは、「滑らかな曲面である」と言うことです。
例えば半径r、高さが定数の円柱は成り立たないのですが、両サイドに半径rの半球をそれぞれくっつけた立体では成り立ちました。
ただこの滑らかさはどれくらい必要か。C1でいいのかさらに必要か。(問題3)

一応、専攻外ですが解析幾何の授業も受けてておりましたので、この条件や参考文献をご存知の方、ぜひ宜しくお願いします。

大学の数学科を卒業した者です。

高校時代、半径rの球の体積をrで微分すると、表面積になることは数IIで習いました

そして、その次に一辺がrの立方体の体積をrで微分すると、表面積にはならないことも習いました。

そして今、一般の立体で体積を微分すると表面積になる立体の条件を考えています。立体をいくつかの場合に分けてみました。

(1)正多面体の場合・・・一辺をrとするのではなく、ある長さをrととることで、体積をrで微分すると表面積になることは発見しました。
例えば立方体では一...続きを読む

Aベストアンサー

 問題の趣旨としては体積V、表面積Sが1変数tで定まるような場合(V=V(t)、S=S(t))を想定していると思いますが、どのような立体に対してdV/dt=Sとなるかと言うことなら適当に条件を付ければ(1)のように形状としては任意の形状の立体に対してdV/dt=Sとなるようにできます。ここで適当な条件というのはtに対する立体の変形のさせ方が相似変形であるということと変形のパラメータtをdV/dt=Sを満たすように一定倍率で調整するということです。
 相似変形でない場合(ご質問の円柱+球の組み合わせで円柱の高さを変えないで円柱・球の半径のみ変えるなどの場合)にはその指定の仕方によっていろいろ変わってくると思います。1例を(2)に示します。
 例(1)(2)等から考えるに、「この形状ならdV/dt=Sとなる」と言うものではなく、形状と変形のさせ方とを組み合わせて考慮する必要があるようです。形状と変形のさせ方とを組み合わせた上で、dV/dt=Sを満足するようにするにはあくまでdV/dt=Sが条件であって、[形状と変形のさせ方とを組み合わせた上でdV/dt=Sとなる条件]を気の利いた形で表現するのは難しいように思えます。

(1)任意形状の立体の例
任意形状の立体を相似変形させることを考え、変形のパラメータをtとすると
V(t)=a・t^3
S(t)=b・t^2
a、bは立体の形状によって決まる定数
とするとき、新たに
t'=(3a/b)t
を変形のパラメータとし、このt'を改めてtとすればdV/dt=Sとできます。

(2)直方体の例
各辺の長さをa、b、cとして
a=a(t)
b=b(t)
のように変形のパラメータtに対して辺a、bを適当な(任意の)関数で変形するようにしたとき、辺cのtに対する変形の関数を調整してdV/dt=Sとなるようにできますが、このようなcの関数はdV/dt=SのV、Sにa、b、cを代入してできるcについての微分方程式から決定できます。

 問題の趣旨としては体積V、表面積Sが1変数tで定まるような場合(V=V(t)、S=S(t))を想定していると思いますが、どのような立体に対してdV/dt=Sとなるかと言うことなら適当に条件を付ければ(1)のように形状としては任意の形状の立体に対してdV/dt=Sとなるようにできます。ここで適当な条件というのはtに対する立体の変形のさせ方が相似変形であるということと変形のパラメータtをdV/dt=Sを満たすように一定倍率で調整するということです。
 相似変形でない場合(ご質問の円柱+球の組み合わせで円柱の高さ...続きを読む

Q数学の自由研究について

中学校の宿題で、
「数学についての自由研究」という課題が出たのですが、
どういうことを調べていいのかまったく分からないんです・・・

数学の自由研究について、
何かいい課題(?)
っていうか調べることはないでしょうか?
教えてください!!お願いします。。

Aベストアンサー

数学に関する歴史について調べてみては如何でしょうか。

例えば、エジプト文明ではどんな数学があったのかとか、
どんな経緯で円周は360度と決まったのか、などです。
日本の数学(和算)について調べるのも興味深いかもしれません。

Q夏休みの自由研究 数学系の研究

中学1年生の男です。
夏休みの自由研究があって、数学系なものを
調べようと思います。
そこでノートを買ったんですが、僕の考えてる物だと
ノートに埋まらないと思って
他のを考えているんですが、思いつかなくて
考えているのは、

魔法陣
クロスワードパズル

だけなので
何か回答をしてくれると
ありがたいです。
皆さんのご回答お待ちしてます。

Aベストアンサー

 クロスワードパズルのどこがどう数学なのかさっぱり分からない。魔法陣は難しい問題で、完全解決と言えるところには至っておらず、専門に研究している人が結構います。
 自由研究で数学系、というのはなかなかやりにくい。小中学生が夏休みだけで発見したり解決できると思える程度の問題は既に解かれているか、高校・大学レベルなら簡単に解けちゃうものが多いからね。

 「コラッツ予想」という有名な未解決問題があります。「ひとつ0でない自然数を持ってくる。それが偶数なら2で割り、奇数なら3倍してから1を足す。その答が偶数なら2で割り、奇数なら3倍してから1を足す。その答が…これを繰り返して行くと、必ず有限回で答が1になる。」というもので、まだ例外が見つかっていないが、「必ず有限回で答が1になる」ということも証明されていない。
 もちろん、これを解決するのは無理だけれども、ま、それはさておきです。いろんな数でやってみると、1になるまでに何回繰り返すか、途中の答が最大いくらになるか、などの様子に、いろいろバリエーションがあるんです。なので、次々に出てくる答がどう変わるのかを図やグラフで描いて調べてみたらどうだろう。

 ところで以下は、問題を理解することは容易だけれども、解くのはなかなか難しい。中1で答が理解できたら大したものだけど、もしそれが或る程度できるようなら、自分で問題を少し変えて考えてみるというのも面白いかも。
http://oshiete.goo.ne.jp/qa/30706.html
http://oshiete.goo.ne.jp/qa/3177493.html
http://oshiete.goo.ne.jp/qa/45812.html
http://oshiete.goo.ne.jp/qa/110453.html

 クロスワードパズルのどこがどう数学なのかさっぱり分からない。魔法陣は難しい問題で、完全解決と言えるところには至っておらず、専門に研究している人が結構います。
 自由研究で数学系、というのはなかなかやりにくい。小中学生が夏休みだけで発見したり解決できると思える程度の問題は既に解かれているか、高校・大学レベルなら簡単に解けちゃうものが多いからね。

 「コラッツ予想」という有名な未解決問題があります。「ひとつ0でない自然数を持ってくる。それが偶数なら2で割り、奇数なら3倍してから1...続きを読む

Q至急(o_ _)o数学の自由研究!!

冬休みの宿題で
『数学の自由研究』というのが
出されました!!

初めてだったので
どんなことを題材にすれば
いいのか分からないです( >_<)

中2~高校生レベルの
テーマと簡単な内容を
教えてください!

個人的には
ハノイの塔とかサイコロ(確率)は
どうかな?と思ってます
さサイコロ(確率)は
やり方が分からないので
教えてもらえれば嬉しいです(´・ω・`)

Aベストアンサー

全然違うけれど。代数学で。

「三乗根なんて一発だ」なんてどう?

4096=x^3 x?

これ実は一目です♪ 16ね。計算機使ってないよ^^;

二桁まで一目。三桁の数字になると、ちょっとかかるか・・・。

1^3=1
2^3=8
3^3=27
4^3=64
5^3=125
6^3=216
7^3=343
8^3=512
9^3=729

これは暗記する必要もないです^^; 計算すればそんなに難しくないでしょう?

下一桁だけ見て? 
1→1
2→8
3→7
4→4
5→5
6→6
7→3
8→2
9→9
 (当然 0^3=0 なので 0→0)

下一桁が重複していないのが分かる? 2が8に 3が7に。
8は2に。7は3に変わるだけ。後は元のまま。

10のくらいは 二通りあるけれど、簡単なほうで。

10^3=1000ね
20^3=8000ね。

10^3<15^3<20^3 
これは分かるよね^^;

1000<15^3<8000

この仕組みを利用すればいいです^^;

下一桁が5で1000以上、8000以下 だったら三乗根は 15。

こっちは自分で考えてみて?

こういうのも結構面白いから。

(=^. .^=) m(_ _)m (=^. .^=)

全然違うけれど。代数学で。

「三乗根なんて一発だ」なんてどう?

4096=x^3 x?

これ実は一目です♪ 16ね。計算機使ってないよ^^;

二桁まで一目。三桁の数字になると、ちょっとかかるか・・・。

1^3=1
2^3=8
3^3=27
4^3=64
5^3=125
6^3=216
7^3=343
8^3=512
9^3=729

これは暗記する必要もないです^^; 計算すればそんなに難しくないでしょう?

下一桁だけ見て? 
1→1
2→8
3→7
4→4
5→5
6→6
7→3
8→2
9→9
 ...続きを読む

Q数学の自由研究について …

御観覧ありがとうございます。 中学の夏休みの宿題で数学の自由研究が出たのですが、なにか参考になるURLをご存じでしょうか?内容は数式などです。 お願いします。

Aベストアンサー

こんにちは。数学科ではありませんが、理系大卒です。

>内容は数式などです

数式でまとめろと言う、指示があったんですか? 数学を数式でまとめるならば、学部はおろか修士クラスの論文になりますよ。「数式でまとめろ」と指示した先生だって、まともな研究なんて出来ないはずですよ。冗談では有りません。

私が中学生なら…
・「ゼロ」の発見について
・代数方程式の起源について 
あたりかナ~ 両者とも多少は数式が出てきそうだし…

Q自由研究について

私の中学校では、夏休みに、理科だけでなく数学の自由研究をしなくては
いけません。 数学と関係する身近な疑問や、おもしろい内容があれば教えてください。


ちなみに、去年の金賞だった人は、バーコードについて調べたり、影の長さについて調べていました^^

Aベストアンサー

日頃、何かとお世話になっているデータの圧縮なんてどうですか?
写真を撮ればJPEG、jpgという画像データの圧縮法を使っています。
音楽ではMP3。。。

で、
どうしたらデータをうまく圧縮できるか、
その方法を自分で考えてみよう!!
すごい方法を考え出せたら、一生遊んで暮らせるだけのお金を稼げるかもしれない(笑)。

参考になるサイトは、
http://www.seiai.ed.jp/sys/text/cs/chp03/c03a120.html
などなど。
ネットですこし調べれば、
いくらでも圧縮法について解説してあるサイトを見つけることができますよ。

あと、暗号などもおもしろいですよ。
で、自分でいい暗合の作り方を考えてみよう。
当然、その暗号の解読方法も考えないとダメですよ。
暗号化はできたけれど、解読(復号)できなければ、なんの意味もないですから。
そして、
うまくいけば、
この夏休みのうちに
巨万の富を稼げるかもしれないです。

Q数学の自由研究について

夏の課題に数学の自由研究が出ました、調べ学習ならまだ自分でも出来ますが、[身の回りに疑問に思った事を数学の力で解決しよう!!]みたいなもので全然思いつきません。

皆さん良い案があったら是非教えて下さい。

自由研究だけど絶対やらなければいけないので。

中学2年で数学はかなり苦手です。

ネットで調べても良いのがなく、友達に聞いても教えてくれませんでした。

Aベストアンサー

質問を締め切っていないという事は、まだ回答が欲しいのかな?
宝くじに当たる確率ってどのくらいかという疑問を持ったことはありませんか?

ジャンボ宝くじは1000万本を1ユニットとして販売し、1ユニットの中に1等が1本ある。

ジャンケンで1000万分の1の確率といえば、近い値がジャンケン(勝率2分の1)24連勝の1677万7216分の1の確率。
東京ドームの観客数で言えば満員で5万人の観客がいるドームが200個あったとして、その中の一人を探し当てる確率。
新幹線の定員が約1300席で3000本の列車が東京-名古屋を毎日往復しているので...。
サイコロを二つふって7の目が出る確率が18分の1なので...。

などと1000万分の1を他のことに例えるのも、自由研究としては面白いですね。

どのようなものがどのような確率を持っているかはインターネットで検索できます。
計算は、勉強だと思って手書きで行ったほうがいいと思います。

Have a nice summer holiday!

Qこれって数学的何ですか?

数学の自由研究について調べるうちにこんなものを発見しましたhttp://buzz-plus.com/article/2015/01/12/janken/

数学的ってなんか数字を使ってるイメージなんですけど、これはデータの読み取りですか?

数学が好きな方、詳しい方は僕の言ってる意味が分かんないと思いますが、是非回答をお願いします。

僕は数学が苦手です。

Aベストアンサー

ゲーム理論のナッシュ均衡というものがあります。

数学ですので、数式を用いて説明すると以下の通りになります。
標準型ゲーム G = (N, S, u) (N はプレーヤーの集合、S = prod_{i in N} S_i は戦略の組の集合、u = (u_i)_{i in N} ; (u_i : S rightarrow mathbb{R}) は効用の組)において、戦略の組 s^* in S がナッシュ均衡であるとは、全てのプレーヤー i in N と、全ての s_i in S_i に対して、 u_i(s^*) geq u_i(s_i, s^*_{-i})

どうですか?全く意味がわからないですよね。

具体的な例を出して説明すると少しはましかもしれません。

冷蔵庫を販売している家電量販店AとBがあるとします。
AとBがお互い時期をずらしながら定期的にセールを開催し、冷蔵庫を販売している中、新手の家電量販店Cが出店し、激安価格で冷蔵庫を販売したとします。
AもBも負けじと価格を下げ、これ以上下げれない状態まで、AとBとCが価格を下げきり、しかも、ここで価格を上げると売れなくなってしまうため、損するような状況であれば、これはナッシュ均衡と言えます。利益が出ない状況まで値下げしてしまったけど、もう価格を戻すこともできない、まさに硬直状態ですね。

このようにナッシュ均衡は、身の回りにもたくさんあふれているものですので、そういった事例を探していくのは研究のひとつになるかもしれませんね

ゲーム理論のナッシュ均衡というものがあります。

数学ですので、数式を用いて説明すると以下の通りになります。
標準型ゲーム G = (N, S, u) (N はプレーヤーの集合、S = prod_{i in N} S_i は戦略の組の集合、u = (u_i)_{i in N} ; (u_i : S rightarrow mathbb{R}) は効用の組)において、戦略の組 s^* in S がナッシュ均衡であるとは、全てのプレーヤー i in N と、全ての s_i in S_i に対して、 u_i(s^*) geq u_i(s_i, s^*_{-i})

どうですか?全く意味がわからないですよね。

具体的な例を出して説明する...続きを読む

Q球の表面積の微分8πr には?

球の体積4/3πr3を微分すると表面積4πr2となりますが、表面積を微分した8πrには、何か意味があるのでしょうか?
微積は苦手なので、簡単に解説していただけたら、ありがたいです。

Aベストアンサー

たとえば、

球の表面を塗装する場合に、
半径を1単位増やしたときに塗料がどれだけ余分に必要か、

など。

Q数学の始まり

私は夏休みの数学の自由研究で数学史を調べることにしたのですが、数学がどうやって生まれたかということがわかりません。知っている方は教えてください。また数学史のわかりやすいサイトがあれば教えてください。

Aベストアンサー

ここに詳しく掲載されています。
サイトではなく、PDFファイルです。
http://ddb.libnet.kulib.kyoto-u.ac.jp/tenjikai/2003/zuroku/pdf/4000.pdf#search='%E6%95%B0%E5%AD%A6%E3%81%AE%E5%A7%8B%E3%81%BE%E3%82%8A'


人気Q&Aランキング

おすすめ情報