柔軟に働き方を選ぶ時代に必要なこと >>

 dy/dx + A y^(1/2) =C 但しA,C は定数 y^(1/2)はルートyです

この微分方程式の解を教えてください。C=0の場合の解は本に載っておりますが、これがある値をとる場合はどのように計算式を導いていけばよいか御教示お願い致します。

このQ&Aに関連する最新のQ&A

求積表」に関するQ&A: 求積表の計算方法

A 回答 (2件)

dy/dx + A√y = C (A,C は定数)



y-C/A+(C/A)・log((√y)-C/A) = -(A/2)・x+C0 (C0:積分常数)
    • good
    • 0
この回答へのお礼

早速の回答有難う御座いました。y=f(x)を求めようとしましたが、x=f(y)で逆計算すればいいこと分かりました。パソコンで数値計算します。
本式は水槽に水を供給しながら一方ある量ドレンしていく時の液面変化を求めようとしております。
有難う御座いました

お礼日時:2013/11/17 09:50

dy/dx + A√y = C, C≠0 は変数分離形に変形可能なので,微分方程式そのものは,求積法で解けます.一般解は,Mを積分定数とすると,



x = M + ∫dy/(C - A√y)

と書けます.

一般解が求まれば,「微分方程式を解く」という要求された作業は終わりです.後は,不定積分 ∫dy/(C - A√y) を計算する作業のみとなります.

「微分方程式を解く」という作業と不定積分を計算するという作業は,全く別物です.

実は,A,C (C≠0)を任意定数とすると,不定積分 ∫dy/(C - A√y) は,初等関数では表示できません.

なお,与式の一般解は,

y= ((C/A)^2)[W(z)+1]^2
z= (-1/C)exp(-(x+c1)A^2 -1),      c1 は積分定数.

で表されます.W(z)は,ランベルトのW関数です.下にランベルトのW関数のウイキペディアを貼っておきます.参考にして下さい.

ランベルトのW関数(ウイキペディア)
https://ja.wikipedia.org/wiki/W%E9%96%A2%E6%95%B0

以上です.
    • good
    • 0
この回答へのお礼

早速の回答有難う御座いました。教示お願いした式は、水槽に一定の水を供給しながら、一方ある量の水をドレンしていく時の水槽液面の変化を求めるものです。条件は簡単でも式を立てるとなかなか難しい事知りました。教示頂いた内容は自分には難しくこれから勉強していきます。有難う御座いました。

お礼日時:2013/11/17 10:00

このQ&Aに関連する人気のQ&A

求積表」に関するQ&A: 時定数について

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q物理学で研究職につくには

現在、高3の受験生です。

僕は、将来は物理学で研究職につきたいと思っています。

そもそも、研究職につける人は、かなり限られると思いますし、
物理学という分野でも同じ事が言えると思っています。

それに僕は、そんなに天才的な何かがあるとは思えませんし、
高校時代から物理の難しい本を読んで、
大学レベルの事を勉強しているなんて事もありません。

それでも、やっぱり研究職につきたいと思います。

学校の授業でも物理が一番好きですし、
勉強してて面白いとも思えて、自分には物理があってるのかな~
なんて思っているんですが、
こんなくらいの考えで物理学科なんて行ったら、
痛い目見たりしてしまうでしょうか?

何か質問がよくわからなくなってしまったんですが(笑)

とりあえず、物理学科に行って、研究職につける人というのは、
どれくらいいるもんなんでしょうか?

Aベストアンサー

No.2です。補足です。

No.2で原子核理論と原理核実験を書き忘れるという失態を犯してしまいました。そういう分野もあります。その他、生物物理などもあります。

No.3の方が書かれていますが、物理は実力主義の世界なので、出身大学は関係ないです。
実力主義の結果として東大や京大の特定の大学出身者に偏る傾向があるということになります。
たとえば、東工大は東大出身の教授が多いのですが、それは東工大出身者をコネで採用するということをしていないので、実力で採用した結果そうなってしまうだけです。
しかし、東北大、名古屋大出身の優秀な研究者もたくさんいますので、ご安心ください。
物理学者になることだけが目標であれば、どうせ学部では基礎的な勉強しかしないし、教授と専門分野について語りあうことも一切ないので、旧帝大だろうが地方大だろうがどこでも一緒です。
でも、一般に優秀な者は入試程度でつまづくはずはないです。

さて、宇宙にご興味がおありとのことですが、大きく2つのパターンに分けられると思います。
1.数学が得意で、物事の原理を根本的に突き詰めるのが好き
2.漠然と宇宙が好き
1でしたら、初期宇宙などの宇宙理論、もしくは素粒子論がよいでしょう。
2でしたら、観測的宇宙論や宇宙観測がよいでしょう。

宇宙理論はかなり人気のある分野ですよ。
私は東大出身ですが、同期で宇宙理論に進んだ人は数人いました。
(全員、とても優秀な方でした。)
残念ながら全員、途中でやめていきました。
宇宙理論はそんな感じです。
だいたい、宇宙理論は各大学にポストが2つや3つくらいしかないわけです。
ある大学のポストが2つと仮定して、そのポストについている教授、助教授の年齢が55歳、45歳だったら、(定年が65歳なので)あと10年間はその大学では全く空きがでません。その一方で、毎年数名、大学院に入ってくるわけですから、おのずから競争は厳しくなります。そういう分野は博士課程を終えたあと、世界中を任期が2,3年のポスドクをやりながら転々とします。
たまにポスドクが切れちゃって半年や1年くらい無職になったりする人もいます。
そこまでして続けるというのは、物理が好きというのを通り越していて、物理教の狂信者といった感じですね。
で、諸国を転々として、日本に空きができたら帰ってくるという感じでしょうか。
だから、旧帝大で宇宙理論のポストにつこうと思ったら、それなりの能力と覚悟が必要でしょう。
しかし、基準を下げれば、結構簡単です。
日本には実はたくさん大学があって、地方大学で一般教養の学生に物理を教えるポストや、国際××福祉大学のような聞いたこともないような私立大学で文系の学生にエクセルやワードの使い方を教えるポストもたくさんあり、そういうのは割と簡単になれます。
理論でしたら、お金がもらえて時間があればどこにいようが研究はできるので、そういう手もあります。

ちなみに、宇宙観測に行った同期数人は、ほとんど研究者としてのポストか、JAXAや民間企業などで観測衛星の開発にかかわる仕事についています。宇宙観測も人気があります。

素粒子実験、物性実験は、博士号取得→助手→助教授とかなりスムーズに進むケースが多いです。

生物系では、博士課程の途中で助手になる人もいますし、分野によっていろいろですよ。

今は理系は修士まで行くのが当たり前で、優秀な大学院生も大勢いる一方で、学部の内容さえろくに理解していない本来大学院に来る必要もない大学院生も山ほどいるのが現状です。だから、遠慮することないと思いますよ。(意外かもしれませんが大学より大学院の方が簡単に入れます)
そこそこの大学を出て修士までだったら、希望すれば大抵どこでも就職できるので、とりあえず物理学科に行って勉強したらいいと思いますよ。
理論物理は人間の能力を極限まで鍛えるのに最適です。
物理をやめて今は他の分野の仕事をしている友人が
「場の量子論を経験した以上、他の分野の学問は簡単にしか思えない」
と語っていました。確かに数式には極端に強くなります。

ただし、修士で就職する場合、修士1年の終わり頃から就職活動を開始しなくてはいけないので、大学院に入って1年以内に決断する必要があります。長い間迷っている時間はないです。で、その時期はまだ場の量子論の初歩をかじりかけた段階だと思うので、さしずめ1950年代までくらいの物理しか知らないでしょう。物理の全体像を把握する前に続けるかやめるか決断しなくてはいけないということです。
博士課程まで行って博士号をとるのは簡単なことですが、そこまで行くと27歳なのでそれなりのリスクが伴うことを覚悟しておく必要があります。

最後に、
ノーベル賞を受賞した朝永振一郎(ともながしんいちろう)は、物理学者になると父親に話したときに止められたそうです。そんな道に進んでも高校の教師になるのが成れの果てだぞ、それでもいいのか、と。朝永さんは、好きだからそれでも構わないと思い、物理の道を選びました。
私もこれから進もうとする人に少し怖気づかせることを書いてしまいましたが、kiku511様は朝永さんのようにすごい才能があり、次々と大発見をして歴史に名を残すような学者になるかもしれませんね。

No.2です。補足です。

No.2で原子核理論と原理核実験を書き忘れるという失態を犯してしまいました。そういう分野もあります。その他、生物物理などもあります。

No.3の方が書かれていますが、物理は実力主義の世界なので、出身大学は関係ないです。
実力主義の結果として東大や京大の特定の大学出身者に偏る傾向があるということになります。
たとえば、東工大は東大出身の教授が多いのですが、それは東工大出身者をコネで採用するということをしていないので、実力で採用した結果そうなってしまうだけで...続きを読む

Q非線形微分方程式の問題です

非線形微分方程式について質問です。
とある大学院試験の数学の問題で次のような問題がありました。
y = dy/dx (x) + 4(dy/dx)^2
この微分方程式は (dy/dx)^2 の項があり、非線形微分方式です。
非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。

私はこの問を解けませんでした。
解くことは可能なのでしょうか。
お願いします。

Aベストアンサー

a^2y=ax+4
(補足)まじめに解くと
y'=pとおけば
y =4p^2 + xp
xで微分すると
p=8pp'+p+xp'
p'=0 →p=a(定数)
または、
p=-x/8
p=aのとき
y =4a^2 +ax
y=C(x+2C)

p=-x/8のとき
y= -x^2/16(これが抜けてた。こっちが特殊解?)

>非線形微分方程式では dy/dx をこのように y や x とは一見独立したようなものとして扱うのが定石なんでしょうか。

というより
1階高次常微分方程式の解法手順で解くと
p'=0 →p=a(定数)
が出てくるから。
p'=0 →p=a(定数)
が出てこない一般の場合は、意味がない
(定石)
y=f(p、x)
と解けるときは、両辺をxで微分して(pの微分方程式にして)
pを求めて、y=f(p、x)に代入する。
x=f(p、y)のときはyで微分する(1/pとすれば上とおなじ)
などなど
>非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。
というのはあくまで一般論。とくに大学院試験の数学の問題では
名前のついた(解くことができる)有名な”非線形の”方程式が出る。
(とおもう)

a^2y=ax+4
(補足)まじめに解くと
y'=pとおけば
y =4p^2 + xp
xで微分すると
p=8pp'+p+xp'
p'=0 →p=a(定数)
または、
p=-x/8
p=aのとき
y =4a^2 +ax
y=C(x+2C)

p=-x/8のとき
y= -x^2/16(これが抜けてた。こっちが特殊解?)

>非線形微分方程式では dy/dx をこのように y や x とは一見独立したようなものとして扱うのが定石なんでしょうか。

というより
1階高次常微分方程式の解法手順で解くと
p'=0 →p=a(定数)
が出てくるから。
p'=0 →p=a(定数)
が出てこない一般の場合は、意味...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q誘電体に働く力がわかりません

「面積S、横幅Lの導体平板が2枚、間隔dを空けて存在する並行平板コンデンサがある。このコンデンサに電圧Vを印加しながら、コンデンサの右端からxのところまで、誘電率εの誘電体で満たした。真空中の誘電率をε0として、誘電体に働く力Fの方向を求めよ。」
という問題がわかりません。

コンデンサに電荷Qを充電して、電源を外し、誘電体を入れる場合には、コンデンサの静電エネルギーW=(Q^2)/2Cであることから
  F = -∂W/∂x > 0
よって誘電体に働く力の向きはxの増加する方向(コンデンサに引き込まれる方向)だと思いました。

ですが、電圧Vを印加したままの状態だと、コンデンサの静電エネルギーW=C(V^2)/2なので
  W = {εSx/(d×L)+ε0S(L-x)/(d×L)}(V^2)/2
  F = -∂W/∂x
= SV^2/(2d×L)(ε0-ε)<0
よって誘電体に働く力の向きはxの減少する方向(コンデンサから追いやられる向き)だと思いました。
これであっているのでしょうか?

Aベストアンサー

考え方が間違っている。

コンデンサの静電エネルギーの変化と誘電体の運動エネルギーの和は保存しません。
保存量でないためF=-∂W/∂xとはできません。

電源がつながっている状態では電源自体が仕事をするのでその影響を考えないといけないのです。
電源がした仕事=コンデンサの静電エネルギーの増加+誘電体の運動エネルギーの増加
になります。
誘電体が中に入った時、コンデンサの静電エネルギーは増大しますが電源の行った仕事はそれ以上に大きいため誘電体の運動エネルギーは増大します。
(電荷量の増加⊿Qとすると電源の行った仕事はV⊿Qとなります。コンデンサの静電エネルギーの増大は(1/2)V⊿Qですので誘電体に(1/2)V⊿Qの仕事がなされるのです。)


人気Q&Aランキング

おすすめ情報