外出自粛中でも楽しく過ごす!QAまとめ>>

量子力学と統計物理を勉強するようになってフェルミ面という言葉をよく聞くようになりましたが、フェルミ面がどんなものなのかいまいちイメージできません。

わかりやすい考え方はないのでしょうか?

A 回答 (2件)

一言で言うと、「波数(運動量)空間での、そこまで電子が詰まっている、という面」


ということになりますが、もう少し噛み砕いて説明を試みます。

空のバケツに水を入れると、平らな水面ができます。この「水面」というのは、言い
換えると「実空間(x, y, z 座標)での、バケツ内で最大の位置エネルギーも持つ水分
子達の面」なわけです。実はフェルミ面というのもある意味で似たようなものです。

基本的に全ての物質は原子から成っていまして、原子は原子核と電子を持ちます。と
いうことは物質の中にはものすごく多くの電子が居るわけなのですが、このうちのい
くらかはあまり原子核に強く束縛されないため、運動エネルギーを持って動き回るこ
とができます(特に金属の場合)。
高校物理で習うように、運動エネルギーは速度あるいは運動量の2乗に比例します。
では、物質中の電子のエネルギー分布(どのエネルギーの電子がどの位の数居るか)
はどうなっているのでしょうか? 詳しい所は統計力学などで学ぶのですが、すごく
大雑把に言うと、バケツの中の水と同じように「低いエネルギーから順に席が埋まっ
ていく」のです。低いエネルギー=小さい運動量、ということで、電子の運動量の
(x, y, z)成分で3次元の座標表示をすると、ちょうどある半径を持つ球の内側にだけ
電子が居ることになります。この球面が「フェルミ面」です。

このフェルミ面、固体の電子の状態を表す特徴的なものなので、物性物理ではとても
重要になります。一番単純な場合は上記のように球面ですが、例えば「x方向には電子
の運動に対して抵抗がある」みたいな状況ですと、同じ速度でもx方向とy, z方向に動
く電子のエネルギーは変わってきます。すると、フェルミ面も球面ではなくなるわけ
です。

直感的な理解を目指してみましたが、こんな感じで説明になっているでしょうか?

# 注意事項
・全体に、ものすごく大雑把に議論を省略しています。
・フェルミ面の話は固体中の電子には限らないのですが、簡単のために例を限定しました。
・フェルミ統計の話はばっさりと省きました。低いエネルギーから『席が埋まる』と考えて
 良いのかどうか、という所に関わるのですが、詳しくは量子力学の教科書を読んでください。
    • good
    • 2

離散的なエネルギー準位のある系ならどんな系でも良いのですが、簡単のためにポテンシャルによって粒子が束縛されている系を考えます。

束縛されている粒子が電子等のフェルミ粒子の場合、パウリの排他律によって一つの状態には一つの粒子しか入れません。粒子がスピンを持つ場合、エネルギーとスピンの決まった状態が一つの状態で、そこに一つの粒子しか入れないということです。なので電子の場合には、一つのエネルギー準位にはスピンの上向きと下向きで2つの電子しか入れません。そこでこのポテンシャル系に複数の電子があり、電子同士の相互作用は無視出来たとすると、系の基底状態ではエネルギー準位の下の方から電子が2つずつ入っていくことになります。そうすると、下の方の準位は電子が占有しており、ある準位から上側には電子が居ないという、ある境界が存在することになります。この境界に対応するエネルギーのことをフェルミ・エネルギーと呼んでいます。フェルミ・エネルギーから決まる運動量の大きさをフェルミ運動量と言います。この系に束縛されている電子は、3次元の運動量空間の中で原点を中心としてフェルミ運動量を半径とする球の中に居ることになります。この球の表面を(運動量空間の)フェルミ面と言います。これに対応する座標空間でのフェルミ面を考えることもできます。中心力によって束縛を受けている系では、座標空間でのフェルミ面も球面となります。平らな表面をもつ金属等を考える場合には、座標空間のフェルミ面もやはり平面として考えることが出来ます。少しはイメージが湧いたでしょうか?
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Q実空間と逆空間のイメージとつながり

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点になるのは球面はが広がった時に干渉して強め合ったところだけ出てきたってことですよね。
しかし、回折点がどの格子面に対応するのかがよく分かりません。(結晶の向きが分かっているってことなら、いいのですが。どこから面を透過してきた波なのか分からないのに基準はどこにとるのでしょう?)みなさんはどのようにはっきりとしたイメージが持てるようになりましたか、コツのようなものをお教えください。
ちなみに関連したことで、フーリエ変換というのも時間→(角)周波数ですから、単位を見て逆数になっているのでデルタ関数はいろんな周波数を含んでいるなぁとはなんとなく式を見て分かるのですが、こちらも(変換の過程の)イメージがはっきりしないのです。
どうもこれらの知識が繋がってきません。
これらのイメージを表示できるフリーソフトなどがあれば教えて下さい。
よろしくお願いします。

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点に...続きを読む

Aベストアンサー

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆空
>間に対応しているのか間のイメージがはっきりとつかめ
>ません。
については結論から言って上に書いた関係をはがき程度のメモに絵を描いてポケットに忍ばせておき、時折その絵を眺めつつイメージをたくましくしていく以外にないのではないでしょうか。フーリエ変換の関係も同じです。
このあたりのイメージを強めていくのに下記URLが参考になると思います。そこには「マイクロ波による散乱実験を通して逆格子空間を体感する」とあります。がんばってください。
(P.S)
フリーソフトは知りませんが、バンド理論というキーワードで検索すればヒットするかも知れません。

参考URL:http://labeweb.ph.kagu.sut.ac.jp/LabExercise/micro/micro.html

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q波数(k)を用いた空間座標表示を導入する意義を教えて下さい

金属結晶中の電子の状態について波数(k)を用いた空間座標表示を導入する意義を教えて下さい

Aベストアンサー

私もかつて金属電子論を勉強しはじめに、なぜこんな恣意的な表示をするのか?と悩んだことがあります。そのとき私が最終的に納得した答えを書きます。これだけが理由ではないかもしれませんが、私は以下のように考えて納得しました。

まず、仮にkでなく、単純に位置で表示することを考える。
すると、ある位置に対して電子のエネルギーを、横軸位置、縦軸エネルギーのグラフにプロットすることになる。
しかし量子力学では、位置固有状態が、かならずしもエネルギー固有状態ではないので、位置とエネルギーを同時に決定できない。
したがって、「ある位置にある電子のエネルギー」という上記のようなプロットは不可能。

では、どうしたらいいか?答えは、エネルギーと同時に固有状態になるある物理量を横軸に選び、縦軸エネルギー横軸???という形でプロットをすればいい。

仮に、結晶でなくただの一様な空間だと平面波がエネルギー固有状態で、
運動量と同時に固有状態になるので、この運動量あるいは、これをプランク定数(2πでわったもの)でわった波数kを横軸に選べばいい。

じゃあ、一様な空間でなく結晶の場合は?その場合でも実はエネルギーと
同時に固有状態になる物理量が存在する。それは結晶運動量でこれをhbarで割ったものが波数kになる。この存在を保証するのがブロッホの定理。

したがってkを横軸にとるとそのkのときのエネルギーとして、E-Kのプロットを作れる。

私もかつて金属電子論を勉強しはじめに、なぜこんな恣意的な表示をするのか?と悩んだことがあります。そのとき私が最終的に納得した答えを書きます。これだけが理由ではないかもしれませんが、私は以下のように考えて納得しました。

まず、仮にkでなく、単純に位置で表示することを考える。
すると、ある位置に対して電子のエネルギーを、横軸位置、縦軸エネルギーのグラフにプロットすることになる。
しかし量子力学では、位置固有状態が、かならずしもエネルギー固有状態ではないので、位置とエネルギーを...続きを読む

Q波数のイメージとその次元

題名の通り、波数のイメージとその次元がどうも食い違ってしまうと言いますか、ちょっと納得できないので質問します。
波数の定義は、k=2π/λ(または、本によってはk=1/λ)で与えられています。ここで、私は波数は2πという単位の長さを波長で割っているのであるから、これは単位長さ当たりの波の数だと考えました。大学の先生に聞いてもあやふやな答しか返ってきませんでした。(大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑))
その後、いろいろ調べて「波数は空間周波数とも言える。」と書いてあるのを見つけました。普通、周波数と聞けば、単位時間当たりに何回振動するかだけど、これは時間ではなく空間で与えているだけかと思って納得してしまったのです。
でも、それでは波数の次元は無次元になってないとおかしいではありませんか。
しかし、本で調べたところ、波数の次元はm^-1ではありませんか。
波長の次元はmとして、2πの次元は無次元でないといけません。では、これは角度でradなのでしょうか?
そうすると、先ほど納得したイメージではつじつまが合いません。2πを長さと考えてイメージを作ったのですから。
「波数を定義すると便利だから。」というのを聞いたことがあるのですが、波数のイメージはもてないのでしょうか?(波数っていうぐらいだから、波の数じゃないの?)

題名の通り、波数のイメージとその次元がどうも食い違ってしまうと言いますか、ちょっと納得できないので質問します。
波数の定義は、k=2π/λ(または、本によってはk=1/λ)で与えられています。ここで、私は波数は2πという単位の長さを波長で割っているのであるから、これは単位長さ当たりの波の数だと考えました。大学の先生に聞いてもあやふやな答しか返ってきませんでした。(大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑))
その後、いろいろ調べて「波数は空間周波数とも言える。...続きを読む

Aベストアンサー

おっしゃるとおり波数のイメージは>単位長さあたりの波の数
でまったくOKです。
ですから次のように考えてはいかかでしょう?
10m中に波が5回あるとき波数を求めるには、5(無次元)÷10(m)ですね。
ちゃんと次元もm^-1となるのはすぐに納得されると思います。
この時、先に波長2mが分かっていたらこういう求め方もできます。
波長は波1回あたりの長さだから10(m)÷5(無次元)として求めますが、
この式は波数とちょうど逆数の関係にあるので、波数=1/2mと求められます
ここで注意していただきたいのは1mを2mで割っているのではなく、2m(波長)の逆数をとっているという点です。
波数の定義の式も2πmや1mを波長で割ったのではなく、波長の逆数に2πをかけたもの、波長の逆数そのもの、と捉えるのが正しいのです。

もうひとつ波動関数の式 y=Asin(wt-kx)との関係から捉えるのも重要です。
(y:変位,A:振幅,t:時間,x:基準点からの距離)
sin()の中は位相で角度(無次元)なのでw,kの次元はそれぞれt,xの次元の逆数とするのです。ここでkを波長λを用いて求めると2π/λ(rad/s)となります
波動の式としてy=sin2π(wt-kx)の形をもちいた時には2πが消えたk=1/λとなるわけです。
長くなりましたが少しでも直感的理解の助けになれば幸いです。

おっしゃるとおり波数のイメージは>単位長さあたりの波の数
でまったくOKです。
ですから次のように考えてはいかかでしょう?
10m中に波が5回あるとき波数を求めるには、5(無次元)÷10(m)ですね。
ちゃんと次元もm^-1となるのはすぐに納得されると思います。
この時、先に波長2mが分かっていたらこういう求め方もできます。
波長は波1回あたりの長さだから10(m)÷5(無次元)として求めますが、
この式は波数とちょうど逆数の関係にあるので、波数=1/2mと求められます
ここで注意していただきたいのは1mを2...続きを読む

Q音響モード・光学モード

フォノンの光学モード、音響モードの図の見方がわかりません。わかりやすく説明できる方がいらっしゃったらお願いします。

ここ↓
http://cl.rikkyo.ne.jp/cl/2004/internet/kouki/rigaku/hirayama/041222/12_22.html
のページの下から1/4あたりにある図みたいなのです。

Aベストアンサー

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていません。なぜでしょうか。
 固体の振動を例にとると、式1はλを小さくしていくと問題が発生します。つまり式1がどんなに小さな波長にでも成立するとすると問題が発生します。波長が0.01nmになったらどうなります。原子の間隔は0.1nmのオーダーなので、それよりも狭い領域に波の振動が含まれるとはどういうことでしょう。そういう波はありえないというか意味がないのです。
つまり式1は波長が極端に短いところでは変更を受けるわけです。

音響モードと光学モードとは、分散関係でkを小さくしていった場合、振動数がゼロになるのが音響モードで、有限の値をとるのが光学モードです。

結晶の単位胞に原子が1個しかない結晶では、音響モードしかありません。光学モードが現れるためには、単位胞に2個以上の原子が含まれる必要があります。

それではなぜ「音響」モードと呼ぶのでしょう。
音響モードは実は充分kが小さい領域ではω=ckという線形な関係に漸近します。つまり式1です。式1が表すのは音波だったため、「音響」モードと呼ばれます。

それではなぜ「光学」モードと呼ぶのでしょう。単位胞に原子が2つ含まれる場合はイオン結晶でよく起こり、片方が+、もう片方が-に帯電しています。
それが質問者の示したwebの図にもあるように互い違いに振動するモードが光学モードにあたり、+と-の電荷が互い違いに振動すると電気分極が振動し、光(格子振動の場合は赤外光)と相互作用します。

光学モードをもつ結晶に赤外光を当てると、光学モードの振動数に相当する赤外光が吸収されます。「光」で観測できるから「光学」モードです。

フォノンの光学モードと音響モードの話は、どんな固体物理の教科書にも載っていると思いますので、以上の説明の手がかりに一度じっくり読んでみられたらいかがでしょうか?

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていませ...続きを読む

Q“ in situ ” とはどういう意味ですか

科学の雑誌等で、“ in situ ” という言葉を見ますが、これはどういう意味でしょうか。
辞書では、「本来の場所で」、「もとの位置に」などと意味が書いてありますが、その訳語を入れても意味が通りません。
分かりやすく意味を教えていただけないでしょうか。

Aベストアンサー

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対してプローブをhybridizationすることをさします。
これによって、染色体上で特定のDNA配列を検出したり、組織標本上で特定のRNAを発現する細胞を検出したりできます。生体内の局在を保った状態でターゲットを検出するということです。

化学反応、酵素反応などでは、溶液中の反応のように、すべての役者が自由に動き回れるような系ではなく、役者のうちどれかがマトリックスに固着していて、その表面だけで反応がおこるようなケースが思い浮かびます。

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対...続きを読む

Qフォノンのモードについて

はじめまして。

フォノンのモードにはE1(TO)やA1(TO)といったものがあるのを知りました。
ですが、この記号が何を表しているのかが全く分かりません。

もしご存知の方がいらしたら、教えて頂けませんでしょうか?

Aベストアンサー

まず、フォノンには音響モード(Acoustic mode)と光学モード
(Optical mode)の二種類があります。前者が隣り合う原子が同位相で
動くのに対し、後者は逆位相で動いています。

このそれぞれに、縦波(longitudinal)と、横波(transverse)があります。
したがって、2×2の4種類(LA, TA, LO, TO)が存在します。
TOというのは、このなかの横光学モード(transverse optical)のことです。

E1やA1は、結晶の対称性を表す群論の用語です。
結晶が対称性を持つ場合、結晶の振動であるフォノンも当然対称性を
持ちます。

群論の話は下の参考サイトにある講義資料がわかりやすいでしょう。
フォノンの基本的な分類についての話は、キッテルの固体物理に
でていたはずです。
また、群論まで含めたフォノンの話は、ユー・カルドナの半導体の基礎
http://www.amazon.co.jp/%E5%8D%8A%E5%B0%8E%E4%BD%93%E3%81%AE%E5%9F%BA%E7%A4%8E-%E3%83%94%E3%83%BC%E3%82%BF%E3%83%BC%E3%83%BBY-%E3%83%A6%E3%83%BC/dp/4431708103
に書いてあります。

参考URL:http://ocw.hokudai.ac.jp/Course/GraduateSchool/Science/PhaseTransition/2001/index.php?lang=ja&page=materials

まず、フォノンには音響モード(Acoustic mode)と光学モード
(Optical mode)の二種類があります。前者が隣り合う原子が同位相で
動くのに対し、後者は逆位相で動いています。

このそれぞれに、縦波(longitudinal)と、横波(transverse)があります。
したがって、2×2の4種類(LA, TA, LO, TO)が存在します。
TOというのは、このなかの横光学モード(transverse optical)のことです。

E1やA1は、結晶の対称性を表す群論の用語です。
結晶が対称性を持つ場合、結晶の振動であるフォノンも当然対...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング