大学1年レベルの数列の極限の問題です。
(i)   a_1 = 1, a_n = 1 / (1 + a_n-1)
(ii)  a_1 > 0, a_n = √(3 + a_n-1)
(iii)  x_1 = (1/2)(c + a/c), x_n = (1/2)(x_n-1 + a/x_n-1)  (a,c>0)

(i),(ii)についてはa_n,a_n-1を共にaと置いて出てくる2次方程式の解のうち、
初項>0から±の+の方を取ったのが極限値になることはなんとなく記憶にあるのですが
それをどう導出するか思い出せません。(iii)に関しては手も足も出ません。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

すいません、ボケてました。

taropooさんのおっしゃるとおりです。
下の私の回答のrを rn と書かせてください。
(ii)については rn=1/(√(3+an)+α) とします。
面倒なので、絶対値の中身がすぐに正だと分かるものは絶対値をはずします。

(i)について
rn=α/(1+an)<α ですので
|a(n+1)-α|=r|an-α| < α|an-α|
よって 0≦|a(n+1)-α| < α^n|a1-α|
nを無限にとばすと右辺は0にいくのではさみうちの原理より
O.K.ですね。

(ii)について
an>√3 ですので 
rn< 1/(√(3+√3)+α) (=rとおく)
0<r<1 よりあとは(i)と同じようにすればよいと思います。

(iii)について
rn < 1/2 がすぐ分かるので(i)と同じようにはさむことができます。
    • good
    • 0
この回答へのお礼

OKです。すっきりしました。
ありがとうございました。

お礼日時:2001/06/05 20:19

3題とも同じ方法で解けます。


(i)について
taropooさんのおっしゃる二次方程式は
(1) x^2+x-1=0
ですね。この正の解をαとします。0<α<1に注意。
以下、a_n をanと書きます。

|a(n+1)-α|=|1/(1+an)-α|=|(1-α-αan)/(1+an)|

=|(α^2-αan)/(1+an)| (∵ (1)より 1-α=α^2)

=|α/(1+an)|×|an-α|

ここで r=|α/(1+an)| とおくと、結局

|a(n+1)-α|=r|an-α| となり、これを繰り返し用いて

|a(n+1)-α|=r^n|a1-α| となります。

両辺のnを無限にとばすと 0<r<1 より(∵ an>0,0<α<1)

lim|a(n+1)-α|=0 ∴ lim an=α  

(ii)について
ポイントだけ書きます。
x^2-x-3=0 の正の解をαとすると
|a(n+1)-α|=|√(3+an)-α|=|(3+an-α^2)/(√(3+an)+α)|
ここで3-α^2=-α を代入して、あとは(i)と同じです。

(iii)について
同じように2次方程式を作ればいいんですよ。
x^2=a となるので α=√a ですね。
ところで相加相乗平均よりxn≧√aなので

0≦x(n+1)-√a=...=(xn-√a)^2/(2xn)=r(xn-√a)

ここで r=(xn-√a)/(2xn) は 0<r<1 ですので
(∵ xn-√a>2xn とするとすぐに矛盾が生じるのでr<1です。)
求める極限値は√aとわかります。

この回答への補足

返事が遅くなってしまってゴメンナサイ。

r=|α/(1+an)|

とおく事に抵抗があるのですが。
つまり、こう置くとrはnによる事になり一定値ではなくなります。
と言う事は

|a(n+1)-α|=r^n|a1-α|

と言うのはおかしい気がするのですが。
いかがですか?

補足日時:2001/06/05 01:52
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q超絶ドラゴンラッシュ2での当たりキャラは?

今回のイベントでの当たりドラゴンは何でしょうか?
地獄級回っても何も落ちないので萎えてはいるんですが・・・
参考にしたいので当たりドラゴンを教えてください。
出るまで頑張るつもりではいますが・・・

Aベストアンサー

持っているモンスターや現在の状況次第ですね。

始めて間もないころならば、御三家、特にルナデピナス(闇の最終進化の状態)などは、究極進化させることで手ごろな闇パが作れたりするのでいいかもしれません。

その他の機械龍も割とステータスが高いので、つなぎにはいいかもしれません。コストがかなり高いのが難点ですが。

Q a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,

 a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,3・・)に対して、次の問題に答えよ。
(1) a^2_(n+1) - a^2_n = a_n - a_(n-1) が成り立つことを示し、数列{a_n}が単調数列であることを示せ
(2) a_n<2 となることを示せ
(3) lim a_n (n→∞)を求めよ
以前に質問して答えていただいたのですが、(3)が、理解できませんでした。(3)から、途中式も詳しく教えてください。よろしくお願いします。

Aベストアンサー

#2 の訂正:
考える x を「x^2 = 1+x」としちゃうと問題があるので, ここは「x = √(1+x) を満たす x」としてください. ついでにそのあとの式も
a_(n+1) - x = √(1+a_n) - √(1+x)
から右辺の有理化という方針にしてください.
でも, 「前にした質問」の URL は書いてくれないのね.... その「前の質問」に答えた人への対応としても, ちゃんと「どの質問であるのか」を明記するのが人として正しいと思います.

Q高校数学 極限の初歩について

関数の極限の問題を考えるときに
右極限、左極限を考えて極限を求める場合と
そのまま極限を求める場合との違いは何なんですか?

どういう問題にはどっちで考えるのか
よくわかりません。

Aベストアンサー

>そのまま極限を求める場合
左極限と右極限が一致する場合はそのまま極限を求めれば良いでしょう。

例) sin(x)/x(x→0), |x-1|(x→1)

>右極限、左極限を考えて極限を求める場合
片方しか関数が定義されていない場合や、左極限と右極限が異なる場合には、指定された方、あるいは定義されている方の極限を求めます。

例)
|x-1|/(x-1)(x→1-0 or x→1+0), x^x(x→+0), xlog(x)(x→+0)

Q単位円上にn点A_1,A_2,…A_nがあったとき、OA_1↑+OA_2↑+…+OA_n↑=0↑ならば

つい先ほど数学カテですばらしい回答をいただきました。ありがとうございます。拡張問題としてはどうなるのか疑問を持ちました。

中心を原点Oとする単位円上にn点A_1,A_2,…,A_nがあったとき、

OA_1↑+OA_2↑+…+OA_n↑=0↑

とn個のベクトルの和が0となるとき、いったいどういった関係があるのでしょうか?

たとえば、n=3であれば、3点A_1,A_2,A_3は正三角形の頂点をなすことは、先ほど教えていただきました。

たとえば、n=4であれば、4点A_1,A_2,A_3,A_4は長方形(もしくはつぶれて線分になったもの)の頂点をなすであろうと予想しますが。

Aベストアンサー

aiueoさんがおっしゃっておられることは、例えば、(以下すべてベクトルです)
OB1=OA1
OB2=OB1+OA2
...
OBn=OB(n-1)+OAn
としたときに、OBn=0で、多角形B1B2B3...Bnが等辺多角形になるということですね。
あまり良く考えずにその点勘違いし、失礼しました。
私(ならびに他の方々)の回答は単位円の周上のn個の点A1,A2,A3,...,Anの位置関係の話ですが、それとauieuさんの等辺多角形になるという事実との関係が見えて興味深いです。

Q「極限を調べろ」の問題は常に右方極限と左方極限を調べなければいけない?

極限を調べろという問題は常に右方極限と左方極限を調べなければいけないのでしょうか?

ある問題で、
lim(x→0)x-2/x^2-x
というのは、右方極限と左方極限を調べて、異なるため極限は存在しないという解になっているのですが、こういう極限を調べる問題の場合、右方極限と左方極限を常に調べなければいけないのでしょうか?
それとお異なる雰囲気がする場合のみ調べればいいのでしょうか?

よろしくお願いします。

Aベストアンサー

「雰囲気がするときのみ調べる」のではなくて、取り敢えずは、明らかでない場合は常に調べるようにした方が良いと思います。
特に、今回の例題のようなx → a で f(x) / g(x) の極限を調べる場合において、g(x) が連続で g(a) = 0 ならば、 x = a を境に g(x) の符号が変わる可能性はかなり高く、 x → a で f(x) / g(x) → ? / 0 の形ならば、 g(x) の符号の変化は疑うべきことでしょう。
今回の例題( x→0 で (x - 2) / (x^2 - x) の極限)では、分母の関数も単純で、x = 0を境にあからさまに符号が変化しますよね。この問題でそれに気づかなかった(雰囲気を感じられなかった)とすると、そもそもが、注意すべきことを最初から考えていなかった、忘れていたということでは?
であれば、まずはなるべく多くのケースで考えてみるのが良いでしょう。雰囲気を感じられるかどうかの感度は、その人の習熟度で変わるものでしょう。これからもっと複雑な関数の極限を求めることもあるのでしょうが、今回の例題では、一般的に分母が 0 に収束するようなケースは注意が必要だと、まあ怪しい雰囲気を感じる感度が上がったということで、良いのではないでしょうか。

「雰囲気がするときのみ調べる」のではなくて、取り敢えずは、明らかでない場合は常に調べるようにした方が良いと思います。
特に、今回の例題のようなx → a で f(x) / g(x) の極限を調べる場合において、g(x) が連続で g(a) = 0 ならば、 x = a を境に g(x) の符号が変わる可能性はかなり高く、 x → a で f(x) / g(x) → ? / 0 の形ならば、 g(x) の符号の変化は疑うべきことでしょう。
今回の例題( x→0 で (x - 2) / (x^2 - x) の極限)では、分母の関数も単純で、x = 0を境にあからさまに符号が変化しますよ...続きを読む

Qa_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,

a_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,)のときの lim(n→∞)a_n をもとめよ。
途中し式も詳しく教えてください

Aベストアンサー

a_1=1
a_n≧1とすると
(a_{n+1})^2=a_n+1≧2
a_{n+1}≧√2>1

x^2=1+x
x=(1+√5)/2>1
a_{n+1}+x>2
(a_{n+1})^2-x^2=a_n-x
(a_{n+1}-x)(a_{n+1}+x)=a_n-x
|a_{n+1}-x|=|a_n-x|/(a_{n+1}+x)<|a_n-x|/2

|a_2-x|<|a_1-x|/2=(√5-1)/2

|a_{k+1}-x|<(√5-1)/(2^k)とすると
|a_{k+2}-x|<|a_{k+1}-x|/2<(√5-1)/(2^{k+1})

|a_{n+1}-x|<|a_1-x|/(2^n)

ε>0に対して (√5-1)/ε<n0 となる n0があり
n>n0 ならば |a_{n+1}-(1+√5)/2|<(√5-1)/(2^n)<(√5-1)/n0<ε
lim_{n→∞}a_n=(1+√5)/2

Q極限値に関して!!

分数関数の極限値に関して、分母の極限値が「0」ではなく、分子の極限値が「0」という場合もありますよね???

Aベストアンサー

いくらでも、存在しますよ。

limX/(X+1) もそうですね。
x→0

きっと、「分母の極限が0の時に、その分数関数が極限値を持つ必要条件が、分子の極限も0である」ということを勘違いしそうになったのですね。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Q関数の極限

関数の極限で、sinやcosが出てくると分からなくなります。
例えば、
x→-0のときの1/sinxの極限です。
x→-0であるからx<0となるのは分かるんですけど、そこから答えを導き方が分かりません。
x<0から答えまでの説明をお願いします。

またsin、cosの問題について解くコツがありましたら教えて下さい。数列の極限は分かるんですけど、関数の極限が苦手なので、関数の極限全体の解くコツみたいなのがあればぜひ教えて下さい。
よろしくお願いします。

Aベストアンサー

x→-0のときの1/sinxの極限について。
x<0 で、xが0に近いとき sinx の正負を考えます。
sinx<0 でOKですね。
sinx<0 なら 1/sinx<0 ですね。
ここまで確定させれば安心です。
sinx の絶対値がとても小さいときの 1/sinx の絶対値はとても大きいことがわかれば(さっきの「負」を思い出して)答えは ∞ でなく -∞ であることがわかります。
関数の極限全体についてアドバイスを1つ挙げるとすれば、「極限がどうなるかまず直感で予想する、その後確かめて予想が正しかったかどうか反省する」このことに心掛けると次第に自信が持てるようになると思います。

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。


人気Q&Aランキング

おすすめ情報