
XやYと置くやり方で解くのが参考書に載っているやり方かと思います。
しかし、もっと簡単に解けないのかと調べてみると、比を利用して解くというやり方を見付けました。
ですが、そこに載っていた解き方の説明が大まか過ぎて、よくわかりません。
下の問題なのですが、どういう考え方なのか、ご教授お願い致します。
A町からB町に向って一定の速さで歩いている人が、A町発B町行きのバスに7分ごとに追い越され、B町発A町行きのバスに5分ごとに出会った。
このバスはA町行き、B町行きともに等速度で走り、等間隔で運行しているものとすると、バスは何分何秒ごとに発車しているか。
1.5分40秒
2.5分50秒
3.6分00秒
4.6分10秒
5.6分20秒
答え、 2
【速い解き方】(↓この途中式の解説をお願い致します)
(7+5)÷2=6
(7-5)÷2=1
(6+1)×5÷6=5と5/6 よって5分50秒
No.5ベストアンサー
- 回答日時:
#1、#2です。
お返事ありがとうございます。リンク先見ました。教えてくださり、ありがとうございます。
「超高速解法DVDシリーズ」を売るため、というアピールは否めませんね。(背景が、黒でなくて淡いピンクかグリーンにすればいいのに。笑)
アピールは良いと思いますよ。
だってSPIなどの数的処理は時間との勝負で、1問平均60秒目標ですから。
「ほら! たった3行の式で解けちゃう!」
ということだけをアピールしていて、
「詳しくしりたい人・この超高速を身に着けたい人は、DVD買ってね♪」
ということでしょう。
「教えてくれるサイト」ではなかったのが残念! 笑
私は、
#3、#4のredgarberaさんの回答で、完璧だ、と思っているんです。
「XやYと置くやり方で解くのが参考書に載っているやり方かと思います。しかし、もっと簡単に解けないのかと調べてみると、比を利用して解くというやり方を見付けました。」
の完全な答えになっています。
私がredgarberaさんにお礼を言いたいくらいです。
ま、回答者どうしのやり取りは推奨されていないので、差し控えましたけどね。
私が「独自で編み出した「公式」のような気がする」と言ったのは撤回しておきます。redgarberaさんのおっしゃる通り、和差算自体は、中学受験でも数的処理でもよくある手法ですから(例えば、持っているお金とか)。
ただ、
(7+5)÷2=6
(7-5)÷2=1
は明らかに和差算なのに、
速さの比に和差算を適用した、ということの意味を理解できないまま、
こんなやり方頼りにする必要ない(正確には、「筆者は理由を書いておけよ」)と言ってしまったのは恥ずかしいなあ、
と思いました。
検索するとredgarberaさんと同じようなやり方をしている類似問題はたくさんあるようですね。私自身も中学受験の時に習ったような気もします。図に速さの比(それはつまり進んだ距離の比)を書き込む、というのが、正直私の弱点なのかも知れません。
redgarberaさんが画像添付を再度試みると思っているので、私が画像を付けるのは遠慮しました(ある意味私の図の改良版になるのかな、と予想しています)。
私も投稿時にシステムエラーになることがあります。運営に聞くとキャッシュか何かの問題だそうですが、キャッシュクリアしても解決しない場合があります。
あえて速度を分速で出さずに速度を比のまま表すところに妙がありますね。
前言撤回して、理解すれば、なかなか便利な解法だろうと認めます。
まあ、サイトに
自分の「感覚に合った解法」で勉強する!
とピンク色で書かれていましたから、質問者さんがご自分に合った方法を探すため、いろいろなパターンに触れてみるのは良いことだと思います。時間さえあれば。
ちなみに私なら、比のままでやるやり方を学んだ今になっても、方程式の方を選びます。それは、私にとっては、方程式を避ける理由が特にないし、今回の方程式が割と解きやすいから。
勉強になりました。がんばってください。
サイトもご覧くださり、ありがとうございます!
教えるサイトではなくすいません…笑
自分に合った方法を見付けるのが大切ということですね。
私は苦戦ばかりしてますが…笑
おそらくこれからも苦戦すると思いますが、色んな解き方に触れてみようと思います。
何度も丁寧にご回答くださり、本当にありがとうございます!
No.3
- 回答日時:
この問題では上りと下りの2種類のバスを考えるとわかりにくくなります。
バスは同じ方向に進む2台だけにし、人の向きを変えて考えましょう。バス1と人が同じ場所にいるところから考えます。人がバスと同じ方向に進むと7分後にバス2に追い越され、バスと反対の方向に向かって進むと5分後にバス2と出会う、ということになります。
そうすると、小学校で習う旅人算の考えで、「バスとバスの間の距離÷(バスの速さ-人の速さ)=7分」、「バスとバスの間の距離÷(バスの速さ+人の速さ)=5分」ということになりますね。
ここで比を使います。どちらも距離は同じなのですから、(バスの速さ-人の速さ)と(バスの速さ+人の速さ)の比は5:7ということになります。同じ距離なら速いほど時間は短くてすむので、時間と速さは逆比になるのです。
そうしたら今度は「和差算」を使います。バスの速さと人の速さの和が7で差が5ですね。すると、和の7に差の5を足すとバスの速さ二つ分になるので、これを2で割るとバスの速さの比が出ます(人の速さがバスの速さより5少ないので、これに5をたしてやれば人の速さがバスの速さと同じになり、12はバスの速さ二つ分になる、という考えです。和差算についてご存知ならこのあたりは読み飛ばして下さい)。
一方、7から5を引くと人の速さふたつ分が出るので、これを2で割れば人の速さが出ます(バスの速さから5を引けば人の速さと同じになりますね。すると和は7-5で2となり、これは人の速さ二つ分ですから、これを2で割れば人の速さになるのです)。
というわけで、最初の二つの式はバスの速さと人の速さの比を出すものです。バスの速さと人の速さの比は6:1ということですね。
ちなみに、一つめの式でバスの速さが出ていて、バスと人の速さの和は7とわかっているのですから、二つめの式はこの和の7からバスの速さの6を引いて1と出してもかまいません。
そうしたら最後にまた旅人算を使います。
人がバスと反対の方向に進むとき、バスと人は5分で出会うのでした。そしてバスの速さが6、人の速さが1ですから、バスと人の速さの和の7に時間の5分をかけると、バスとバスの間の距離が出ます。この距離をバスの速さの6で割れば、この距離をバスが走る時間が出ますね。これが三つめの式の意味です。
以上ですがおわかりいただけたでしょうか。不明な点がありましたら補足をつけて下さいね。
お返事が遅くなってしまい申し訳ありません。
ご回答ありがとうございます!
凄く分かりやすく説明して頂き感謝致します。
旅人算の考え方を完全に忘れてしまっていて(汗)、ご回答を読んで「あぁ、そうか!」と凄く納得しました。
こういった問題は昔は得意だったのですが、今はすっかり苦手になってしまって…
でも、ご回答を読んだら解き方が分かり、すっきりしました。
ありがとうございます!
No.1
- 回答日時:
普段、小学生の中学受験をよく指導します。
しかしこの問題は、小学生には少し困難と感じます。
「もっと簡単に解ける方法」というのが、小学生の解き方、ということだと思ったのですがね。
大人にとっては、方程式があるので決して難しくない問題です。
これまで大人のSPI数的処理受験を何人か指導してきました。
しかし書いていらっしゃる【速い解き方】は見たことありません。
おっしゃる通り XやYと置くやり方(方程式)で解くのが一般的です。
先に率直な感想を言わせていただきます。
本も予備校も、「売れる」ために、独自の「とっておきの必殺ワザ」を編み出そうとします。
・・・というか、「もっと、画期的な解き方がないかな」と常に考えるのが、教師のサガだと思いますが。
でもその本が、【速い解き方】と言いながら、理解するのにめちゃくちゃ時間かかったら、本末転倒だと思いませんか?
私は結局、書いていらっしゃる【速い解き方】の真意は全てはわかりませんでした。何か独自で編み出した「公式」のような気がします(皆が認めないと公式と呼ぶのは厳密ではないですけどね)。
方程式を理解・習得するのが早いか、
独自の公式を丸暗記してしまうのが早いか、
ということだと感じますよ。
でも、覚えにくい公式だったらリスクも高いので、私は普段、理解する方をオススメしています。
以下解説です。比を利用しているとは厳密には言えません。ですから、質問者様の求める回答にはなっていません。
「やり方を見付けました」とおっしゃっているので、「(ネットなら)どこで見つけたのか」を教えてくだされば見てみます。
大まか過ぎる説明しかしないサイトなら、あまり頼りにしない方が良いんじゃないか、というのが私の本音ですけどね。
しかし、「方程式を使わずに済むなら、使わない方法でやりたい」という方程式の嫌いな大人の生徒様とも今まで出会ってきましたので、お気持ちはわかります。
さて以下解説です。添付画像と合わせてご覧ください。
右側はダイヤグラムと呼ばれるもので、スペースが余ったからついでに描いたものです。
ダイヤグラムの方が理解が得意な人もいますけど、たいていの人は嫌がるので、右半分は無視していただいてけっこうです。
距離に単位がないと説明しにくいので、便宜的にm(メートル)とします。
バスが発車する間隔を t(分)とします。
人の速さを X(m/分)とします。
バスの速さを Y(m/分)とします。
まず、7分間隔や5分間隔の場合について説明します。
もし人が立ち止っていたら、今目の前を通過するバスと、その後に来るバスとの距離は、
(速さ)x(時間)=(距離)
Yt(m)
です。
ところが人が動くと、
追いかけるバスはその分余分に走らないといけません。
すれ違うバスはその分走る距離が短くて済みます。
【追いかけ】
人もバスも7分間
最初に開いていた距離は Yt
Yt+Xx7=Yx7 ・・・式1
(または進んだ距離の差 Yt=Yx7-Xx7 )
(Xx7は Xかける7 速さかける時間)
【すれ違い】
人もバスも5分間
最初に開いていた距離は Yt
Yt-Xx5=Yx5 ・・・式2
(または進んだ距離の和 Yt=Yx5+Xx5 )
あとは式1と式2を連立。
式1 5倍、式2 7倍
5Yt+35X=35Y
7Yt-35X=35Y
辺々足して
12Yt=70Y
Yが消える。
t=70/12=35/6=5と5/6
X(人の速さ)は求める必要ないが、求めようと思ったら求められる。
ここからが真の解説です。
今、7とか5とか書いたのをそれぞれAとBに置き換えてください。(A>B)
【追いかけ】
Yt+XxA=YxA ・・・式3
【すれ違い】
Yt-XxB=YxB ・・・式4
式1と式2を連立すると
(A+B)Yt=2ABY
これより
t=2AB/(A+B)
・・・「独自の公式」ってやつです。
A=7、B=5を入れれば、
7x5x2/12 となり、7×5÷6 と同じ式になりますから。
なんで私がその本(サイト?)を批判したのかという一番の理由は、
(7+5)÷2=6
(7-5)÷2=1
再び (6+1) という足し算を行う、という無駄を行っているからです。
そういうことをするなら、本に
(7+5)/2=6
(7-5)/2=1
の意味を書いていないといけないですよね、質問者様と同感です。
(A+B)/2
(A-B)/2
を足すと、
(A+B)/2+(A-B)/2=A
なんです。
なら最初からAでいいじゃないか、
わざわざ足して2で割る、引いて2で割るをやらせたいなら、筆者は理由を書いておけよ、
というのが私の感想です。
(6+1)×5/6
↓
7×5/6 でいいんですよ。
6は(A+B)/2 ですから
AB/((A+B)/2)
つまり
ABx2/(A+B)
つまり
2AB/(A+B)
です。
この式の意味は上に書いた通りです。
比の解き方でできなかった自分自身は悔しいですけどね。何だろう?
(以上、そもそも、「なんだ、この方が簡単♪」という実感がないと、わざわざそれをやる必要がない、という私の感想をお伝えしました。)

ご回答ありがとうございます!
中学受験のご指導をされている回答者様のご意見、大変参考になりました。
どうしても時間がかかってしまうので、短縮できないものかと参考書やサイトを見て模索していました。
わかるものもあれば、わからないものもあり…。
なるほど、確かに独自の法則というものが存在するのでしょうね。
ご丁寧な解説をして頂き、より問題の理解を深めることができました。
ありがとうございます。
因みに、こちらが私が見たサイトです。
サイトの下の方に、似た問題の解説が割りと丁寧に書かれています。
しかし質問させて頂いた問題の解説は載ってなかったため、どうにも私には理解できず…;;。
回答者様は数学がお得意のようなので、もしかしたら私の文章なんかではなく、サイトをご覧になられたらお分かりになるのかもしれませんね。
もしお時間があれば、覗いて見てください。
http://www.8000.jp/fighting.html
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
プロが教えるわが家の防犯対策術!
ホームセキュリティのプロが、家庭の防犯対策を真剣に考える 2組のご夫婦へ実際の防犯対策術をご紹介!どうすれば家と家族を守れるのかを教えます!
-
距離の問題(数的推理)
数学
-
数的処理の式の立て方がわかりません。
数学
-
公務員と民間企業の違いは?
就職
-
4
判断推理・数的推理を早く解く方法
就職
-
5
公務員試験の数的推理が難しいです。
数学
-
6
公務員試験の約数倍数の問題(すごく簡単な問題らしい)で、答えを見てもわ
数学
-
7
公務員採用時の職歴調査(バイト歴)について
面接・履歴書・職務経歴書
-
8
公務員試験の数的処理の仕事算の問題です。 ある仕事をA1人で仕上げるには12日かかる。また、B1人で
数学
-
9
公務員試験の売買算の問題です。 解説を読んでもよく分かりません。 分かりやすく教えて下さい。
数学
-
10
官公庁の呼称 貴局(省)?御局(省)?
就職
-
11
数的処理 仕事算
数学
-
12
数的推理
数学
-
13
相対速度???
数学
-
14
公務員受験 適性検査の計算問題を解くコツ
数学
-
15
数的処理 確率 じゃんけん
数学
-
16
面接がたったの10分でしかも適当な感じだったのでショック受けてます
労働相談
-
17
初級公務員・数的処理(数列)の問題です。
数学
-
18
初級公務員・数的推理の問題(N進法)です。
数学
-
19
添え状について(人事担当に質問)
面接・履歴書・職務経歴書
-
20
警察官 志望動機
警察官・消防士
関連するQ&A
- 1 連立方程式 x+y=1 , 1/x + 1/y=-1を解け。ただしx>yとする。 この問題の解き方を
- 2 数学の質問です。 A=5x(y-1)+3(x+2)-2y-4 =5xy-2(x+y)+2 参考書の解
- 3 y=sin(x+c)は微分方程式(y')^2+y^2=1の解であることを示せただしC∈Rであるの解き
- 4 以下のODEを解けと言う問題で y'=y^2/x^2+7y/x+5という問題の解き方が分かりません。
- 5 f(x,y)=F(x,y)かつg(x,y)=G(x,y)⇔f(x,y)/g(x,y)=F(x,y)/
- 6 x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありま
- 7 問題 「x+y=3のとき、x² + y² の最小値とその時のx,yの値を求めよ。」 の解き方を教えて
- 8 この問題の解き方を教えてください。 ⑴x^4+y^4-1=0のときf(x,y)= x^3+2y^3
- 9 面積分 (x^2+y-z)dS S:2x+y+z=2, x,y,z>=0 の解き方を教えて下さい
- 10 f(x,y)=xIn(1+y^2)をそれぞれx,yで微分したいです。Inを使う時&変数が2つの時の解
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
疑問詞の答え方で
-
5
小学6年生速さの問題が分かりま...
-
6
ハリー・ポッターのフレッドと...
-
7
答辞は誰が考えるべきでしょうか?
-
8
小学校算数「割合を使って」
-
9
はじめに兄と弟の二人に持って...
-
10
三人称について
-
11
算数できない大人?
-
12
方程式の問題
-
13
兄と弟の競争の問題
-
14
もしかしたら数学の才能がある...
-
15
英文スピーチ 書き方
-
16
算数の問題を教えてください(...
-
17
硝酸銀の作り方?!
-
18
女性で兄弟に兄や弟がいる人に...
-
19
【数学】方程式の応用問題【解...
-
20
社名を勝手に使って他人がガソ...
おすすめ情報
公式facebook
公式twitter