3重積分において普通の球座標の変数変換は理解できるのですが
 
D{ (x,y,z) | 楕円体 x^2/a^2+y^2/b^2+z^2/c^2≦1 (a,b,c>0) }

で x=arsinθcosφ,y=brsinθsinφ,z=crcosφと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosφにa,b,cがつく理由を教えてください

A 回答 (2件)

>x=arsinθcosφ,y=brsinθsinφ,z=crcosφと変換しますが


球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosφにa,b,cがつく理由を教えてください.。 ←間違い。
正しくは
「x=arsinθcosφ,y=brsinθsinφ,z=crcosθと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosθにa,b,cがつく理由を教えてください.。」

楕円体だからに決まってるじゃないですか.?

つまり、
積分変数を独立した(直交する座標)変数(r, θ, φ)に変換して、変換後の3重積分を独立した直交座標変数による逐次積分(累次積分)に持ち込むためでしょう。
この場合、積分領域Dは
 x^2/a^2+y^2/b^2+z^2/c^2≦1にx=arsinθcosφ,y=brsinθsinφ,z=crcosθを代入すると 左辺=r^2となって 楕円体の領域の式が 「r^2≦1」とrだけの簡単な領域の式に変形され、
D'= { (r, φ, θ) | r^2≦1, 0≦φ<π, 0≦θ≦π }
 = { (r, φ, θ) | 0≦r≦1, 0≦φ<π, 0≦θ≦π }
となります。(結果として煩わしいa,b,cが3重積分の外に括り出せます。)
    • good
    • 0
この回答へのお礼

丁寧な回答ありがとうございました!

お礼日時:2014/05/31 13:25

>x=arsinθcosφ,y=brsinθsinφ,z=crcosφ



zに間違いがあります。正しくは

x=arsinθcosφ,y=brsinθsinφ,z=crcosθ

このような変換を行うのは

楕円体のx,y,z方向の径がa,b,cだからです。

この変換によって

I=∫∫∫(in v)f(x,y,z)dxdydz

=∫∫∫(in v)f(asinθcosφ,bsinθsinφ,ccosθ)∂(x,y,z)/∂(r,θ,φ)drdθdφ

=abc∫∫∫(in v)f(asinθcosφ,bsinθsinφ,ccosθ)r^2sinθdrdθdφ

となり、領域vの対称性がよい場合は積分が簡単になる利点があります。
    • good
    • 0
この回答へのお礼

なるほど、簡単にするためということですね
分かりました、ありがとうございました!

お礼日時:2014/05/31 13:25

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Q≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3

≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3=8…(2)を満たす。
(1)x^2+y^2+z^2をzを用いて表せ。

(x+y+z)(x^2+y^2+z^2-xy-yz-zx)-3xyz=x^3^+y^3+z^3
の関係式を使ってみようかな。。。
って思ったんですが…できません^^;

どなたかよろしくお願いします。

Aベストアンサー

x^2+y^2+z^2をzで表すのだからx^2+y^2の部分が問題です。
x^2+y^2はx+yとxyで表せますね。
だから目標はxyをzで表すことです。

(1)が使えるように(2)を変形してみる。
(x+y)^3-3xy(x+y)+z^3=8
(1)を代入してみる。
2^3-3xy*2+z^3=8
xy=z^3/6
となった。

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Qx*y=log(e^x+e^y)と定義すると、(x*y)+z=(x+z)*(y+z)

x、y∈Rに対して
x*y=log(e^x+e^y)
と定義すると、
(x*y)+z=(x+z)*(y+z)
が成り立ちます。
分配法則の*と+を逆にしたような感じですが、この*から何かしらの代数的な事実が従うのでしょうか?
この*の意味は何なのでしょうか?

x*x=aのとき、x=√aと定めと、
√(a*b)≧(a+b)/2
といった相加相乗平均の関係の類似は成り立つようですが。

Aベストアンサー

e^x=X, e^y=Y, e^z=Z と置いて考えましょう。
e^(x*y)=e^x+e^y → Z=X+Y
e^(x+y)=e^x*e^y → Z=X*Y
つまり、正の数の加算と乗算になります。

>分配法則の*と+を逆にしたような感じですが

まさにその通りです。入れ替えて見てください。

>√(a*b)≧(a+b)/2

通常の相加相乗平均とは逆ですね。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報