利用規約の変更について

一辺の長さが1の正四面体の内部にたがいに外接する2つの球P,Qがある、球Pは正四面体の4面全部に接し、球Qは正四面体の3面に接しているものとする

(1)球Pの半径を求めよ
(2)球Qの半径を求めよ

解説は正四面体をOABCとおき、Oから平面ABCに下ろした垂線の足をH,BCの中点をMとすると
△OAMによる断面は図のようになる、(球P,Qの半径をそれぞれp,qとおく)

Hは明らかに△ABCの重心だからMH=1/3×AM=√3/6

よってOH=√(OM^2-MH^2)=√6/3 ここで球P,Qと△OBCとの接点をそれぞれR,Sとおくと明らかに
△OHM∽△ORPであるから √3/2:(√6/3-p):√3/6:p

よってp=√6/12 また△OHM∽△OSQであるから√3/2:(√6/3-2p-q)=√3/6:q
となっていたのですが、

まず図の断面ですが、球P,Qは辺OAに接していないですが、接していなくていいのですか?その場合理由を知りたいです、それとHは明らかに△ABCの重心とありますが、何故これは言えるのですか?

定義か何かですか?

「高校数学の球の問題です 3-18」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (12件中1~10件)

> 球P,Qは辺OAに接していないですが、接していなくていいのですか?



これは No.1 の方の回答で納得されたようなので省略します。

> それとHは明らかに△ABCの重心とありますが、何故これは言えるのですか?

(∵)
http://oshiete.goo.ne.jp/qa/8747147.html の回答No.4の続きとして示します。
(53) (18, 22) より AH = BH = CH. よって点H は△ABCの外心。
(54) △ABC は正三角形 (∵四面体OABCは正四面体)。
(55) 正三角形の外心は重心と一致するので、(53, 54) より点H は△ABCの重心■。

> それはつまり、PがOH上にある事を認めるって事ですよね、それが
> 納得できないです

これは http://oshiete.goo.ne.jp/qa/8747147.html の回答No.4 (21) で示しました。

> 正四面体のど真ん中にある事の証明

「ど真ん中」が何を指しているのかによりますが、垂心である事は http://oshiete.goo.ne.jp/qa/8747147.html の回答No.4 (52) で示しました。

この回答への補足

有難うございます、N04を読み込んでみますね

補足日時:2014/09/09 19:59
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/09 20:00

>>2面からの等距離という条件で解は面


>>3面では直線、4面では点になるでしょう。
>これは何でそんな事が言えるんですか?

それもご自分でどうぞ。まず2面から。
何もうかばないようなら、立体の問題は
あきらめましょう。

この回答への補足

あきらめる事は出来ないので、再質問と言う形にさせていただきます

補足日時:2014/09/13 18:01
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/13 18:01

〉QがOH上にあるというのも同じような考え方ですか?


Qに関しては、四面体の球Pの占める部分を削った
残りの四面体で考えればよいです。
#球Pの上部に水平に接する面で四面体上部を切り離す。

結局大きさが違うだけで解き方は同じです。

この回答への補足

>四面体は0Hに対して回転対称だから、pはOH上にないと、
>回転でPとOMの距離が変わってしまい、
>全部の面で接していないことになってしまう。
>PがOH上にあれば、半径はすぐに求まりPの位置が確定します。
この御説明をもう少し詳しくお願いします

補足日時:2014/09/13 09:35
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/13 09:35

〉どんな方程式になるんですか?考えたのですが、分かりませんでした



幾何学的てきにではなく、方程式で解いて欲しいということですか?
幾何学的に十分解けるのに。

3点を通る平面の方程式の立て方や、平面と点との距離の計算方法
は高校で習っているはずなのでご自分で挑戦してみて下さい。

2面からの等距離という条件で解は面
3面では直線、4面では点になるでしょう。

この回答への補足

>2面からの等距離という条件で解は面
>3面では直線、4面では点になるでしょう。
これは何でそんな事が言えるんですか?

補足日時:2014/09/13 09:24
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/13 09:24

>PB'=PC'=PD'=PE'となる点Pとなると一点に決まるという事ですよね?


>これも複数あるように思えるのですが、何故一点だと決まるのですか?

三面からの距離が一致する点が1個なのは直感的にも明らか
ですが、方程式立てれば未知数3、条件3なので
予想がつくのでは?

まあ、そんなことを考えなくても、四面体は
0Hに対して回転対称だから、pはOH上にないと、
回転でPとOMの距離が変わってしまい、
全部の面で接していないことになってしまう。
PがOH上にあれば、半径はすぐに求まりPの位置が確定します。

この回答への補足

>方程式立てれば未知数3、条件3なので
>予想がつくのでは?
はい、是非その方程式を立てたいのですが、どんな方程式になるんですか?考えたのですが、分かりませんでした

QがOH上にあるというのも同じような考え方ですか?

補足日時:2014/09/12 18:20
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/12 18:21

HがA,B、Cから等距離にあることは明らかでしょう。


異なれば、ピタゴラスの定理から、0A、OB、OC
が異なることになり、正四面体でなくなります。

つまりHは底面の外心です。

正三角形の内心=外心=重心 なのでHは底面の重心でもあります。

この回答への補足

>HがA,B、Cから等距離にあることは明らかでしょう。
>異なれば、ピタゴラスの定理から、0A、OB、OC
>が異なることになり、正四面体でなくなります。
なるほど、分かりました、ここから正四面体の4面に接する球の中心がOH上にあることはどうやって分かるんですか?Hが△ABCの内心=外心=重心であることは理解できました

補足日時:2014/09/12 18:00
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/13 09:06

「PからOAB,OACに下ろした垂線の足をB',C'とするとPB'=PC'」であるような P は複数あります.



実際問題として「数えきれないほど」たくさんあるよ.

この回答への補足

それがOBC,OAB,OCA、ABCの4面全部に接する,
つまりOCA,ABCにPから下ろした垂線の足をD',E'とするとPB'=PC'=PD'=PE'となる点Pとなると一点に決まるという事ですよね?これも複数あるように思えるのですが、何故一点だと決まるのですか?

補足日時:2014/09/12 02:38
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/12 02:38

#5 の文脈で「そのような P」と書いてあったら普通は


「PからOAB,OACに下ろした垂線の足をB',C'とするとPB'=PC'」
という P のことを意味すると読み取ってもらいたいんだがなぁ.

日本語の読解力に疑問符をつけていい?

この回答への補足

それは、分かりますよ、ですから、その条件を満たすPが他にもあるのですか?何かの直線上にあればPB'=PC'を満たすとかみたいに

補足日時:2014/09/11 20:13
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/11 20:14

そう, 「球P は面OAB と面OAC に同時に接する」なら「PからOAB,OACに下ろした垂線の足をB',C'とするとPB'=PC'」となる. じゃあ, そのような P 全体の集合はどのような図形になる? そして, 今は「面OAB と面OAC に同時に接する」場合を考えたが当然「面OBC と面ABC に同時に接する」場合も考えられる. そうするとそのような球の中心全体はどのような図形になる? この 2つを組み合わせたら?



さらに, ほかの面の組み合わせも考えれば求める球P の中心が質問にある画像の中にかけるはず.

蛇足だけど「そこはPがO,A,Mを含む平面にあるという所から証明で理解しないと分からないです
」はおかしい. 理由もなく「P が平面OAM 上にあることは PがOH上にある事だ」と思い込んだのか?

この回答への補足

>P 全体の集合はどのような図形になる?
どういう事ですか?そうなるPが他にもあるという事ですか?

補足日時:2014/09/10 17:59
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/10 17:59

なんで「P が O, A, M で決まる平面上にあることは問題ない」が「PがOH上にある事を認めるって事」になるんだ? まずそこを説明してくれ. ああ, もちろん「結果的にはそうなる」んだが, それは使うなよ.



球P は正四面体の 4つの面全部に接しているわけだが, これはたとえば「球P は面OAB と面OAC に同時に接する」ともいえるわけだな. このことから何が言えると思う?

この回答への補足

>なるんだ?
そこはPがO,A,Mを含む平面にあるという所から証明で理解しないと分からないです

>このことから何が言えると思う?
PからOAB,OACに下ろした垂線の足をB',C'とするとPB'=PC'とかですか?

補足日時:2014/09/10 00:14
    • good
    • 0
この回答へのお礼

御返答有難うございます

お礼日時:2014/09/10 00:14

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング