【最大10000ポイント】当たる!!質問投稿キャンペーン!

空間群P3の対称性について考え方を教えてください。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (6件)

> 質問なのですが、電場や磁場を印加するとき、空間群P3の結晶のa, b, c軸に印加した場合や空間群C2の結晶のa, b, c軸に印加した場合で、どの方向に分極や磁化が現れるかはどのように判断できるのでしょうか



誘電率や磁化率を表す2階の対称テンソルが、点群の対称操作によって変化しないこと、を考えると、ある程度は判断できます。

まず、結晶の誘電率や磁化率が、単なる数ではなく、一般には2階の対称テンソル(ひらたく言えば3×3の対称行列)として表される、というのはいいですね。これらがテンソル量なので、結晶に印加された電場や磁場の向きと、結晶に誘起された分極や磁化の向きは、一般には一致しません。ですけど、どんな結晶でも、分極や磁化が印加された場と平行になる方向が少なくとも3方向はあり、これらの方向のうちから互いに直交する方向を3つ選ぶことができます(もともと3方向しかないときは、それらがすでに直交しています)。これらの方向を主軸方向といい、そのときの誘電率や磁化率の値を主値といいます。このようなことが言えるのは、実対称行列が直交行列により対角化可能だからです(詳しくは学部一年で使った線型代数の教科書を参照してください)。

そこで、つぎの問題は、このテンソルの主軸方向と主値について、結晶の対称性だけから言えることがどれくらいあるのか?ということになります。いろいろな考え方があるとは思うのですけど、私が好きなのは、対称テンソルを楕円体として頭の中でイメージすることです。

重心が原点にある二次元の楕円が、一般に、短径の長さ、長径の長さ、長軸とx軸の間の角度、で表されるように、重心が原点にある三次元の楕円体は、三つの径の長さと、それらの軸の方向で表すことができます。三つの径の長さがテンソルの主値に対応し、それらの軸の方向がテンソルの主軸に対応します。この楕円体に点群の対称操作を施したときには必ずもとの楕円体と重なり合う、というのが結晶の対称性から要請です。

これだけでは、イメージしにくいと思いますので、例を示します。

例1:単斜晶
二回軸がありますから、楕円体の主軸の一つは結晶の回転軸と一致してなければなりません。そうでなければ、回転操作をしたときにもとの楕円体と重なり合いません。空間群C2であれば、楕円体の主軸の一つはb軸と一致し、残りの二つの軸はac面内にあればどこでもかまいません。

例2:斜方晶
二回軸が三つありますから、楕円体の主軸はすべて結晶の回転軸と一致してなければなりません。そうでなければ、回転操作をしたときにもとの楕円体と重なり合いません。つまりテンソルの主軸と結晶軸は一致します。

例3:三方晶系
三回軸がありますから、楕円体の主軸の一つは結晶の回転軸と一致してなければなりません。さらに残りの二つの径の長さは一致してなければなりません。つまり回転楕円体でなければなりません。空間群P3であれば、回転楕円体の主軸はc軸と一致し、残りの二つの軸はab面内にあればどこでもかまいません。

例4:立方晶系
楕円体の三つの径の長さはすべて一致してなければなりません。つまり球でなければなりません。

以上のことを踏まえると、以下のことがいえます。

空間群P3の結晶のc軸あるいはab面の任意の方向に印加した場合、印加した方向に分極や磁化が現れます。それ以外の方向に印加した場合は、ずれます。どれだけずれるかは点群からはわかりません。

空間群C2の結晶のb軸に印加した場合は、印加した方向に分極や磁化が現れます。それ以外の方向では、ac面内に2方向だけ、ずれない方向があります。他は、ずれます。どれだけずれるかは点群からはわかりませんが、ac面の任意の方向に印加した場合は、ずれたとしてもac面内にとどまります。
    • good
    • 0
この回答へのお礼

これから知識を深めていきます。ありがとうございました。

お礼日時:2014/11/03 17:45

#4に間違いがありました。



誤:C2のab面が鏡映面になると、空間群はC2/mに
正:C2のac面が鏡映面になると、空間群はC2/mに

ごめんなさい。
    • good
    • 0
この回答へのお礼

ありがとうございます。
質問なのですが、電場や磁場を印加するとき、空間群P3の結晶のa, b, c軸に印加した場合や空間群C2の結晶のa, b, c軸に印加した場合で、どの方向に分極や磁化が現れるかはどのように判断できるのでしょうか。

お礼日時:2014/10/25 12:58

> 確認したいのですが、リンク先の図は、空間群P3の3回回転軸はc軸方向で、鏡映面はab面、空間群C2の2回回転軸はb軸方向で、鏡映面はac面という見方であっていますでしょうか。



はい。ほぼ合っています。 P3にもC2にも鏡映面はないので、「鏡映面」という単語は「画面」(モニタで見てる場合)あるいは「紙面」(紙に印刷してから見ている場合)に置き換えてください。

なおP3のab面が鏡映面になると、空間群はP-6に
http://img.chem.ucl.ac.uk/sgp/medium/174az1.htm
C2のab面が鏡映面になると、空間群はC2/mに
http://img.chem.ucl.ac.uk/sgp/medium/012ay1.htm
なります。

これらの図では、P3やC2と違って、左下に鏡映面の記号

 \_ ←こんなやつ

が書いてあるのが分かると思います。

これらの記号の意味は、いちおうリンク先にも書いてある
http://img.chem.ucl.ac.uk/sgp/misc/symbols.htm
…と思ってたのですけど、さすがにこれだけじゃ意味不明ですね。説明不足でごめんなさい。

「international tables for crystallography 見方」でネット検索してみてください。
何となくこれらの図の読み方が分かるようになると、何となく役に立つと思いますので、何となく勉強してみてはいかがでしょうか。
    • good
    • 0

■空間群のヘルマン・モーガン記号について


空間群のヘルマン・モーガン記号の一文字目はP,I,F,A,B,C,Rのいずれかです。
これらの大文字のアルファベットはそれぞれ
 Pは単純格子、
 Iは体心格子、
 Fは面心格子、
 AはA底心格子、
 BはB底心格子、
 CはC底心格子、
 Rは菱面格子、
を表す記号です。ヘルマン・モーガン記号で表した空間群C2の一文字目のCは、シェーンフリース記号で表した点群C2(あるいは対称要素C2あるいは対称操作C2)の一文字目のCとは、何の関係もありません。

空間群のヘルマン・モーガン記号の文字列から
 まず一文字目を取り除き、
 つぎに下付文字を全て取り除き、
 さいごに小文字のアルファベットを全てmに置き換えると、
その結晶の点群を表すヘルマン・モーガン記号になります。
 下付文字を除くという操作は、らせん軸を回転軸に置き換える操作に対応します。、
 アルファベットをmに置き換えるという操作は、映進面を鏡映面に置き換える操作に対応します。

点群を表すヘルマン・モーガン記号と点群を表すシェーンフリース記号の対応付けは、アトキンス物理化学などの、教科書にある表を参照してください。

結晶系は点群を表すヘルマン・モーガン記号から読み取れます。
 点群を表す記号の二文字目(空間群を表す記号の三文字目)が3か-3なら立方晶です。
 それ以外で、点群を表す記号の一文字目(空間群を表す記号の二文字目)が
  1か-1なら三斜晶系で、
  2かmなら単斜晶系か斜方晶系で、
  3か-3なら三方晶系で、
  4か-4なら正方晶系で、
  6か-6なら六方晶系です。
http://img.chem.ucl.ac.uk/sgp/medium/sgp.htm

ブラベー格子はP,I,F,A,B,C,Rと結晶系の組み合わせから分かります。これも教科書にある図表を参照してください。


■空間群C2について
以上を踏まえて空間群C2について考えてみます。

一文字目がCなのでC底心格子です。
三文字目が3でなく、二文字目が2で、斜方晶系ではないので、単斜晶系です。
 もし三文字目が3だったなら、立方晶系です。
 もし下付文字を除く二文字目~四文字目が、xを小文字のアルファベットとして
 222かxx2かxxxだったなら斜方晶系です。
C底心格子と単斜晶系の組み合わせなので、ブラベー格子は、C底心単斜格子です。
http://img.chem.ucl.ac.uk/sgp/medium/005ay1.htm

二文字目以降が2なので、結晶点群は、ヘルマン・モーガン記号で書けば2です(シェーンフリース記号で書けばC2です)。

結晶点群が2なので、対称要素は2回回転軸しかありません。
回反軸を持ちませんので、左右像があります。
極性がありますので、焦電性があります。


■結晶の対称性の高さについて
おおまかには次の順で対称性が高くなります。
 縮退がないので対称性が低い:三斜晶系、単斜晶系、斜方晶系
 二重縮退があるので対称性が高い:正方晶系、三方晶系、六方晶系
 三重縮退もあるので対称性が最も高い:立方晶系

縮退とは分子の電子状態や分子軌道や振動モードに関する縮退のことです。

縮退と点群については、点群の指標表を参照してください。
指標表のいちばん左の列の記号が、それぞれ
 AかBなら縮退なしの対称種、
 Eなら二重縮退の対称種、
 Tなら三重縮退の対称種、
です。

また、2階テンソルで表されるような結晶の性質、たとえば誘電率とか磁化率とか、に注目しても、上と同じで
 三つの主値が全て異なる:三斜晶系、単斜晶系、斜方晶系
 三つの主値のうち二つが等しく軸対称性を持つ:正方晶系、三方晶系、六方晶系
 三つの主値が全て等しく等方的である:立方晶系
という順になります。

■追加の質問について
> 質問なのですが、「結晶がC2かP3に分類される」とあったのですが、これは「結晶がC2かC3に分類される」と同義ということでしょうか。

いいえ。同義ではありません。今回の場合は、結果として「結晶がC2かC3に分類される」ことになりましたが、ヘルマン・モーガン記号で表した空間群の一文字目の記号と、シェーンフリース記号で表した点群の一文字目の記号は、無関係です。

> また、C2とP3の特徴の違いは回転軸が2か3の違いでC2の方が対称性が高いということでしょうか。

回転軸の違いに加えて、底心格子か単純格子かの違いもあります。

また、ふつうは回転軸が2よりも3の方が対称性が高い、とみなすことが多いです。
例えば、主軸に垂直な方向に電場や磁場を印加して、結晶の誘電率(または電気伝導度)や磁化率を測定すると、2では異方性が現れますけど3では等方的(外場の向きが主軸に垂直な面内にあれば測定値が不変)になります。
別の例では、C2vの水分子H2OよりもC3vのアンモニア分子NH3の方が、対称性が高いですよね。後者は分子軌道や振動モードに縮退がありますので。

ただし、C2もC3もC6の対称性を落としたもの、と考えれば、つまり
 C2はC6が歪んで3回回転軸を失ったもの、
 C3はC6が歪んで2回回転軸を失ったもの、
と考えれば、C2とC3の対称性の高さは同じくらい、ということもできます。
    • good
    • 0
この回答へのお礼

詳しい解説ありがとうございました。確認したいのですが、リンク先の図は、空間群P3の3回回転軸はc軸方向で、鏡映面はab面、空間群C2の2回回転軸はb軸方向で、鏡映面はac面という見方であっていますでしょうか。

お礼日時:2014/10/23 17:54

一文字目がPなので単純格子です。


二文字目が3なので三方晶系です。
Pと3の組み合わせなので、ブラベー格子は、単純六方格子です(もしRと3の組み合わせだったなら、菱面格子です)。

二文字目以降が3なので、結晶点群は、ヘルマン・モーガン記号で書けば3です(シェーンフリース記号で書けばC3です)。
結晶点群が3なので、対称要素は3回回転軸しかありません。
回反軸を持たない点群なので、左右像があります。
極性がある点群なので、焦電性があります。

参考URL:http://img.chem.ucl.ac.uk/sgp/medium/143az1.htm
    • good
    • 0
この回答へのお礼

回答ありがとうございます。質問なのですが、「結晶がC2かP3に分類される」とあったのですが、これは「結晶がC2かC3に分類される」と同義ということでしょうか。
また、C2とP3の特徴の違いは回転軸が2か3の違いでC2の方が対称性が高いということでしょうか。

お礼日時:2014/10/23 00:27

シェーンフリース点群にも無いしなー。


「数学」かな?
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む

Q実空間と逆空間のイメージとつながり

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点になるのは球面はが広がった時に干渉して強め合ったところだけ出てきたってことですよね。
しかし、回折点がどの格子面に対応するのかがよく分かりません。(結晶の向きが分かっているってことなら、いいのですが。どこから面を透過してきた波なのか分からないのに基準はどこにとるのでしょう?)みなさんはどのようにはっきりとしたイメージが持てるようになりましたか、コツのようなものをお教えください。
ちなみに関連したことで、フーリエ変換というのも時間→(角)周波数ですから、単位を見て逆数になっているのでデルタ関数はいろんな周波数を含んでいるなぁとはなんとなく式を見て分かるのですが、こちらも(変換の過程の)イメージがはっきりしないのです。
どうもこれらの知識が繋がってきません。
これらのイメージを表示できるフリーソフトなどがあれば教えて下さい。
よろしくお願いします。

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点に...続きを読む

Aベストアンサー

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆空
>間に対応しているのか間のイメージがはっきりとつかめ
>ません。
については結論から言って上に書いた関係をはがき程度のメモに絵を描いてポケットに忍ばせておき、時折その絵を眺めつつイメージをたくましくしていく以外にないのではないでしょうか。フーリエ変換の関係も同じです。
このあたりのイメージを強めていくのに下記URLが参考になると思います。そこには「マイクロ波による散乱実験を通して逆格子空間を体感する」とあります。がんばってください。
(P.S)
フリーソフトは知りませんが、バンド理論というキーワードで検索すればヒットするかも知れません。

参考URL:http://labeweb.ph.kagu.sut.ac.jp/LabExercise/micro/micro.html

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆...続きを読む

Qラウエ条件とブラッグ条件

ラウエ条件からブラッグ条件を導出することについて躓いているので教えてください。

散乱される波数ベクトルをs 、基本ベクトルをa とするとラウエ条件は
(1) s・a = 2πn n∈整数
ですが、(1)の左辺の内積を書き換えると
(2) |s||a|cosθ = 2πn
となり、更に波数ベクトルを波長で表せば
(3) (2π/λ)|a|cosθ = 2πn
これを更に書き換えれば
(4) |a|cosθ = nλ
これがブラッグ条件に相当する、とX線回折の本には書いてあるのですが、ブラッグ条件は一般的に
(5) 2d sinθ = nλ
のようにサインの形で書かれておりどうやって一致させているのかが分からず困っております。
角度の取り方がラウエ条件を考察する際とブラッグ条件を考察する際に違うのでしょうか?教えていただければ幸いです。

Aベストアンサー

>散乱される波数ベクトルをs 、基本ベクトルをa とする
>とラウエ条件は
>(1) s・a = 2πn n∈整数
この(1)式は逆格子ベクトルと結晶の位置ベクトルの関係式を表していますね。つまり、sを「逆格子ベクトル」とし、dを結晶の位置ベクトルとすると
 s・d=2πn  (2)
が成り立ちます。
ラウエ条件は入射波の波数ベクトルをk1、反射波の波数ベクトルをk2、逆格子空間の原点から〈hkl)なる逆格子点に至るベクトルをs(hkl)とすると
  s(hkl)=△k  (3)
で表されます。ここでs(hkl)は
s(hkl)=ha* + kb* + lc*
で定義され、sは実格子の格子面(hkl)に垂直で大きさ|s|は(hkl)面の面間隔d(hkl)の逆数に等しいという性質をもっています(a*,b*,c*は逆格子ベクトル)。
いま、弾性散乱を仮定しますので
 |k1|=|k2|=|k|  (4)
とおけます。すると△kは(絵を書けばよく分かる)
 △k=2ksinθ  (5)
となります。波数ベクトルkはs方向を向いていますね。(3)より
 2ksinθ=s  (6)
両辺にベクトルdをかけると、(2)を使って  
 2kdsinθ=s・d=2πn  (7)
また、k=2π/λ であるから(7)は
 2(2π/λ)dsinθ=2πn
これから
 2dsinθ=nλ (8)
でいいと思いますが。

>散乱される波数ベクトルをs 、基本ベクトルをa とする
>とラウエ条件は
>(1) s・a = 2πn n∈整数
この(1)式は逆格子ベクトルと結晶の位置ベクトルの関係式を表していますね。つまり、sを「逆格子ベクトル」とし、dを結晶の位置ベクトルとすると
 s・d=2πn  (2)
が成り立ちます。
ラウエ条件は入射波の波数ベクトルをk1、反射波の波数ベクトルをk2、逆格子空間の原点から〈hkl)なる逆格子点に至るベクトルをs(hkl)とすると
  s(hkl)=△k  (3)
で表されます。ここでs(hkl)は
...続きを読む

Q接触電位差に関して

接触電位差は2種の異なる金属を接触させたときに生じる電位差のことですが、
例えば、金と銅を接触させてその両側からテスターで電圧を測れば、
電池などを繋いでいなくても電圧が検出されるということなのでしょうか?
実際にやったわけではないのですが、にわかには信じがたいのですが・・

Aベストアンサー

>しかし接触電位差は物質の組み合わせのみで決まる値であって接触面積には相関を持たないように思うのですが、
>広大な面積で接触させれば検出可能な電圧レベルまで行くというのはどういう理屈によるものなのでしょうか?
ここにはトリックがあります。普通の電圧計は実際には電流計なのです。電流計に抵抗を組み合わせてE=iRの関係からEを求めています。iが小さいとRが莫大でもEは測れないのです。
そのため測れる程の電気量を安定に生じさせるために巨大な金属塊を必要とするのです

Q結晶の点群

結晶と点群について次の問題が出されたのですが、

1、(1)~(10)の各分子または図形の点群をシェーンフリース記号で表せ。
2、対称中心(反転対称性)を持つものはどれか。
3、キラリティを持つものはどれか。
4、3回対称性を持つものはどれか。
5、4回軸を持つものはどれか。
6、4回回反軸を持つものはどれか。

(1)B(OH)_3
(2)ベンゼン
(3)ナフタレン
(4)クロロベンゼン
(5)C_3H_4(アレン)
(6)CH_4(メタン)
(7)正四角柱
(8)二等辺三角形の直角柱
(9)正三角柱
(10)正三角柱の側面に模様

自分の考え
1、(1)C_3h (2)D_6h (3)D_2h (4)? (5)D_2d (6)T_d (7)D_4h (8)?(9)D_3h (10)C_3v
2、(2)(7)
3、(1)
4、(1)(6)(10)
5、(7)
6、(5)(6)

と自分は考えました。お願いしたいことは、正しいかどうか確認してほしいことと1の?の部分を教えてほしいです。
問題1については(1)(2)(3)(5)(6)(9)は参考書にあったので、多分あっています。
また、問題4に関して3回対称性となっているのでベンゼンのような6回軸を持つものも入れたほうが良いのでしょうか?

よろしくお願いします。

結晶と点群について次の問題が出されたのですが、

1、(1)~(10)の各分子または図形の点群をシェーンフリース記号で表せ。
2、対称中心(反転対称性)を持つものはどれか。
3、キラリティを持つものはどれか。
4、3回対称性を持つものはどれか。
5、4回軸を持つものはどれか。
6、4回回反軸を持つものはどれか。

(1)B(OH)_3
(2)ベンゼン
(3)ナフタレン
(4)クロロベンゼン
(5)C_3H_4(アレン)
(6)CH_4(メタン)
(7)正四角柱
(8)二等辺三角形の直角柱
(9)正三角柱
(10)正三角柱の側面に模様

自分...続きを読む

Aベストアンサー

4はC_2v、水と同じです。

Q空間群の変換

こんにちは。
私は今、空間群の変換について勉強しています。
空間群Bmm2の斜方ペロブスカイトは擬単斜晶で表すことができるとあるのですが、どのような空間群になるのでしょうか?
また空間群を勉強するのに分かりやすい教科書やソフトなどがありましたらお教え下さい。
よろしくお願いいたします。

Aベストアンサー

空間群…少し勉強したのですが
細かい事は分かりませんでした

ただ、分かりやすそうな本を友達が持っていたので紹介します

今野 豊彦著 “物質の対称性と群論” 共立出版 です

今まで群論や対称性についての本を見ましたが、
これが一番分かりやすそうでした。

僕は途中で妥協してしまいましたが、深く勉強したいと思っている方には
お勧めだと思います

うそだったら申し訳ないですが、
質問に対して、僕の出来る限りの力を振り絞って
答えてみようと思います。

間違っている所があれば、指摘してください

単斜晶系の格子は 格子定数 a≠b≠c, α=β<γ
の格子を成しています

空間群のBという表記は B面に格子点がある格子
を示しています

mm2は 主軸に直交して
2回回転軸(鏡映面)が存在する場合。
を示します

以上の事から
紙に斜方ペロブスカイトの格子を描いてみてください

多分、単斜晶系の結晶格子が描けるのではないかと思います。

単斜晶系の結晶構造をもつものとしてCuOなどがあります。

一度そちらの方でも、結晶構造を確認してみるのも
良いかと思います

群論や対称性を勉強したら教えてください…

では勉強
頑張ってください。

空間群…少し勉強したのですが
細かい事は分かりませんでした

ただ、分かりやすそうな本を友達が持っていたので紹介します

今野 豊彦著 “物質の対称性と群論” 共立出版 です

今まで群論や対称性についての本を見ましたが、
これが一番分かりやすそうでした。

僕は途中で妥協してしまいましたが、深く勉強したいと思っている方には
お勧めだと思います

うそだったら申し訳ないですが、
質問に対して、僕の出来る限りの力を振り絞って
答えてみようと思います。

間違っている所があれば、...続きを読む

Q電子のエネルギーについて

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?

( i)ポテンシャルが存在せず、Eを運動エネルギーと考えた場合・・・
E = hν = 1/2 mv^2
従って、
p = h / λ = hν / v = 1/2 mv ??
これは運動量の定義と矛盾します。

(ii)ポテンシャルが存在せず、Eを運動エネルギー+静止エネルギーと考えた場合(電子の速度は光速に比べて十分遅いので)・・・
E = mc^2 + 1/2 mv^2 ~ mc^2 = hν
従って、
p = h / λ = hν / v = mc^2 / v ??
これも運動量の定義と矛盾します。

つまり、電子のように遅い粒子では、E = hν と p = h / λを同時に満たすことができないように思えるのです。

数多くある量子力学の本でも逃げている部分であり、難解な質問かとは思いますが、ご存知の方がいらっしゃればご回答お願いします。

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレ...続きを読む

Aベストアンサー

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度により表されます。群速度Vgは、角速度ωを波数ベクトルの大きさkで微分したものです。つまり、Vg=dω/dk となります。エネルギーと運動量は、ωとkを使うと、E=h'ω、p=h'k となりますから(h'=h/2π)、Vg=dE/dp となります。非相対性理論の範囲では、E=p^2/2m ですから、Vg=vとなります。相対性理論の範囲では、E^2=p^2c^2+m^2c^4ですから、これもVg=vとなります。

 それでは、質問者様の質問に回答します。
1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

 電子のエネルギーは、静止質量エネルギーを含んだものです。シュレーディンガー方程式のエネルギーは、ご指摘のとおり、静止質量エネルギーは含んでおりません。このため、相対論的量子力学で扱うエネルギーとシュレーディンガー方程式で扱うエネルギーとでは、静止質量エネルギーの分だけ違いがあるということになります。これは(ディラックによれば)、物理的に影響のない項目です。なぜなら、ハミルトニアンは、実の定数分の不定さがあるからです。

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?
 
 既に上で述べたように、λν=v ではなく、E=hν と p=h/λから位相速度が決まります。ド・ブロイはなぜこの式を適用することができると考えたのか、については、ド・ブロイ自身の論文は見ていませんが、ディラックによれば、相対論的に不変な性質から出発してこの考えに至ったようです。つまり、エネルギーと運動量は4次元ベクトル(E/c,p1,p2,p3)を成します。波数ベクトルについても、(ω/c,k1,k2,k3)は4次元ベクトルとなります。どちらも4次元ベクトルであることから、エネルギー運動量を波で表すということは、光だけに限定されるものではなく、ほかの物質であっても成り立つものと考えた訳です。

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度...続きを読む

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む


人気Q&Aランキング