gooポイントが当たる質問投稿キャンペーン>>

線形代数 線形写像
次の行列Aによって定まる線形写像fAの核および像を求めよという問題です。
先生がもしかしたら次元も求めろと言っていた気がします…汗 意味がわからなかったら自分の勘違いなので大丈夫です!
A=1 1 -2 -3
2 1 -1 -5
2 3 -7 -7

次の行列Aによって定まる線形写像fAの核および像の次元を求めよという問題です。
A=1 2 3 4 5
2 5 6 8 10

2問あるのですがお願いします!

答えは載っていたので下に記載しておきます!

このQ&Aに関連する最新のQ&A

A 回答 (3件)

その写像がどこからどこへの写像かとか基底を何にしたときの行列なのかという情報がないと解けません。



問題の不備かあるいは(おそらく)質問者の見落としか。

「下に記載しておきます!」とはどれのこと?
    • good
    • 0

(x,y,z,w)^Tで転置行列…つまり列ベクトル:


x
y
z
w
をあらわすと思ってください。

一問目だけ方針だけを示します。

Aと、四次元実ベクトル空間を掛け合わせると
A*(x,y,z,w)^T=
(x+y-2z-3w,2x+y-z-5w,2x+3y-7z-7z)^T
という線形写像f:R^4→R^3とみなせます。

(余談ですが、逆に線形写像は全て、基底がどの元に行くかを指定すれば定まるので、行列で書けます)
(Asv+Atw=A(sv+tw),ただしAは線形写像s,tは実数v,wはベクトル を考えれば理解できるかも知れませn)

そして、核というのは0の逆像、すなわち
(x+y-2z-3w,2x+y-z-5w,2x+3y-7z-7z)^T=0
を満たす(x,y,z,w)全体からなる空間…つまり四次元ベクトル空間の部分空間
像というのは定義域全体を写したもの、すなわち
(x+y-2z-3w,2x+y-z-5w,2x+3y-7z-7z)^T
を満たす三次元ベクトル空間の部分空間のことです。
算出してみてください。

さらに余談ですが、
この行列のランクと像の次元は一致し、像の次元は定義域の次元から核の次元を引いたものと一致します
ヒマなら実際に確かめてみるといいと思います。
    • good
    • 0

で質問は何?

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q基底であることを示す問題

こんにちは。

K^3において、ベクトルの組(1,2,0)、(1,0,1)、(1,2、-1)が基底であることを示したいのですが、どのように示せばよいかわかりません。

基底の定義:
ベクトル空間Vのベクトルの組x1、x2、・・、xrがVの基底であるとは、次の2条件を満たすことである。
(BS1)V=<x1、x2、・・、xr>である。
(BS2)x1、x2、・・、xrは線形独立である。

定義にそのままあてはめればよいだけだとは思うのですが、実際何をすればよいのかがわかりません。

回答よろしくお願いします。

Aベストアンサー

K^3の3つのベクトルの組があるので、その線形独立を言えば十分である。
すなわち a・(1,2,0)+b・(1,0,1)+c・(1,2,-1) = 0 ⇒ a = b = c = 0 を言えばよい。
あとは, a・(1,2,0)+b・(1,0,1)+c・(1,2,-1) = (a+b+c,2a+2c,b-c) = 0 を解けばよい。 連立方程式を解いて a = b = c = 0 が求められる。


人気Q&Aランキング