√(3.1416×625)2乗+50の2乗  ×140の計算の方法と答えを
教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

「√」の中にπが混ざってるので手で計算するのは厳しいですね。


「√」を残していいのでしたら、
625 = 5×5×5×5
50 = 5×5×2
ですから、
√((625×π)^2+50^2)×140
= √((5^8×π^2)+(5^4×2^2))×140
= √(5^4((5^4×π^2)+2^2))×140
= 5^2×√(625×π^2+4)×140
= 3500×√(625π^2+4)

手計算でできるのはここまでですかねぇ。
    • good
    • 0
この回答へのお礼

ありがとうございます。
根本的にルート計算の仕方と言うか意味がわかんなかったので、
仕事で至急計算してと言われて困ってしまったのです。
計算機で計算しました。

お礼日時:2001/06/12 13:03

普通に関数電卓か何かで計算すればいいのでは?それともそういう類のものを使わずに、紙に書いて求める方法ですか?



ちなみにExcelで計算したところ、SQRT((3.1416*625)^2+50^2)*140=274979.1121・・・となりました。
    • good
    • 0
この回答へのお礼

ありがとうございました。
エクセルのやり方を聞いてやったら、同じ答えになりました。
計算機でのやり方もわからなかったもので。

お礼日時:2001/06/12 12:57

「√」がどこまでかかっているのか(最初の2乗までなのか50の2乗までなの


か全体なのか)を補足お願いします。

この回答への補足

すみません
50の2乗までです。

補足日時:2001/06/12 12:19
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Q√50/√6+2(√3+2)の答え

問題集では答えが 4+11√3/3になるとありますが11がどうやって出てくるのか理解できません。
どなたか解説してもらえませんか?

見辛いですがよろしくお願いします。

Aベストアンサー

見やすくするため、まずは√50/√6を計算します。
分母、分子に√6を掛けて、分母の有理化をしますと(√300)/6=(10√3)/6=(5/3)√3

2(√3+2)=2√3+4

以上を合計して、(5/3)√3+2√3+4=(5/3+2)√3+4=4+(11/3)√3(=4+11√3/3)で、答えになります。

Q√100^2+1/(2π×50×10×10^-6)^2=333.6[Ω]の 解き方をお教えください。

√100^2+1/(2π×50×10×10^-6)^2=333.6[Ω]の
解き方をお教えください。

Aベストアンサー

ルートの中身がどこまでか、分子分母がどこまでか、きちんと分かるように書きましょう。
√100^2+1/(2π×50×10×10^-6)^2=100+1/(π*10^-3)^2
=100+1000000/π^2
π^2<10なので明らかに100000を越える数字となります。

√(100^2+1/(2π×50×10×10^-6)^2)であれば
=√(10000+1/(π*10^-3)^2)
=√(10000+1000000/π^2)
=100√(1+100/π^2)
≒100*3.336
=333.6
となります。

Q√1+√2+√3+…+√nの漸近展開

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
によると
1+1/2+1/3+…+1/n
=γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1)
という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。

http://en.wikipedia.org/wiki/Stirling%27s_approximation
によると
n!
=√(2πn)*(n/e)^n*e^λ(n)
という漸近展開があるそうです。

ところで、
√1+√2+√3+…+√n
などの漸近展開をご存知の方がいらっしゃれば教えてください。

y=√xのグラフとy=√(x+1)のグラフではさまれた面積と考えることで、
√1+√2+√3+…+√n
=(2/3)n√n+…
となることはわかるのですが、
√1+√2+√3+…+√n
=(2/3)n√n+α√n+…
とさらに精密にしたいとき、αがどういった定数になるのかわかりません。

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
によると
1+1/2+1/3+…+1/n
=γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1)
という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。

http://en.wikipedia.org/wiki/Stirling%27s_approximation
によると
n!
=√(2πn)*(n/e)^n*e^λ(n)
という漸近展開があるそうです。

ところで、
√1+√2+√3+…+√n
などの漸近展開をご存知の方がいらっしゃれば教えてください。

y=√xのグラフとy=√(x+1)のグラ...続きを読む

Aベストアンサー

ちなみに今の場合は定積分からも「α=1/2」が想像できます.
まず
∫[0→1] √x dx = 2/3
の左辺を矩形公式で和に変換すると
(1/n)Σ(k=1→n) √(k/n) = 2/3
となり, 両辺に n^(3/2) を掛けると
√1+√2+√3+…+√n = (2/3)n^(3/2)
になります. ただし矩形公式では区間の幅に比例する誤差があるので, 実際には
(1/n)Σ(k=1→n) √(k/n) = 2/3 + O(1/n)
です (O(1/n) は「1/n に比例する項」というくらいの意味).
ここで, 左辺の積分を今度は台形公式で和に変換すると精度が上がって
(1/n)Σ(k=1→n) (1/2)(√[(k-1)/n]+√(k/n)) = (2/3) + O(1/n^2)
になります. ここで同じように両辺に n^(3/2) を掛けて左辺を整理すると
√1 + √2 + … + √(n-1) + (1/2)√n = (2/3)n^(3/2) + O(n^(-1/2))
となり, 両辺に (1/2)√n を加えることで
√1+√2+√3+…+√n = (2/3)n^(3/2) + (1/2)n^(1/2)
まで持っていけます.
ああ, たぶん a が正なら自然数かどうかに関係なく
Σk^a = [1/(a+1)]n^(a+1) + (1/2)n^a + …
となると思いますよ.

ちなみに今の場合は定積分からも「α=1/2」が想像できます.
まず
∫[0→1] √x dx = 2/3
の左辺を矩形公式で和に変換すると
(1/n)Σ(k=1→n) √(k/n) = 2/3
となり, 両辺に n^(3/2) を掛けると
√1+√2+√3+…+√n = (2/3)n^(3/2)
になります. ただし矩形公式では区間の幅に比例する誤差があるので, 実際には
(1/n)Σ(k=1→n) √(k/n) = 2/3 + O(1/n)
です (O(1/n) は「1/n に比例する項」というくらいの意味).
ここで, 左辺の積分を今度は台形公式で和に変換すると精度が上がって
(1/n)Σ(k=1→n) (1/2)(√[(k-1)/n]+√(k...続きを読む


人気Q&Aランキング

おすすめ情報