(1+x)^nの展開式において、16番目の係数と、
26番目の係数とが等しい時、nの値を教えてください。
よろしくお願いします。

A 回答 (3件)

二項定理より、


16番目の係数はnC16、26番目の係数はnC26

最も安直な方法
nCr=nC(n-r)より、n-16=26 n=42

上を言い換えただけですが、Cの定義式より、
nC16=n!/{16!(n-16)!}
nC26=n!/{26!(n-26)!}
これが等しいので、
16!(n-16)!=26!(n-26)!
この等式が成り立つためには、
n-16=26 かつ 16=n-26 となれば良いので、n=42
これが胡散臭いという場合は、
両辺を16!で割ると、26!/16!=26P10より、
(n-16)!=26P10(n-26)!
両辺を(n-26)!で割ると、
(n-16)P10=26P10
両辺に10!をかけると、
(n-16)!=26! よって、n=42

3通りの解法を平行して書いたので、分かりにくいかもしれませんが・・・
    • good
    • 0

しまった。

忘れてた。
1番目はnC0でしたね。

ってことは、両方とも1下がるから、
nC15=n=25 より、n=40ですね。

いやはや失礼しました。
酔っ払いの戯言ということで許してくださいませ。
    • good
    • 0

すいません。


酔っ払っているもので、下から3行目以降を間違えました。

「両辺に10!をかけると、」
ではなく、「これが等しいから」です。
n-16=26 よって、n=42

失礼しましたm(__)m
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qx^n-1とx^n+1の因数分解(複素数係数、実数係数、有理数係数、整数係数)

x^n-1とx^n+1の因数分解(複素数係数、実数係数、有理数係数、整数係数)
において、その方法や結果や性質が載っているサイトがあれば教えていただけないでしょうか?

初歩的なことは知っています。

Aベストアンサー

とことん因数分解すれば結局、

x^n - 1 = Π[k=0,n-1]{x-cos(2kπ/n)-i*sin(2kπ/n)}
x^n + 1 = Π[k=0,n-1]{x-cos((2k+1)π/n)-i*sin((2k+1)π/n)}

となりますよね。これが整数か、有理数か、無理数かは三角関数の
性質を調べたほうがいいのでは?

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む

Qx^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2

x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)
となるのはなぜですか?
教えてください。

Aベストアンサー

1+r+r^2+・・・+r^(n-1)=(1-r^n)/(1-r)

r=x/yとおくと

1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)={1-(x/y)^n}/{1-(x/y)}
故に、
{1-(x/y)^n}={1-(x/y)}{1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)}

両辺にy^nを乗じて
x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)

QF_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2)

のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか?

一文字を変数と見て、地道に割り算するしかないのでしょうか?
効率的な計算方法はありますでしょうか?

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^...続きを読む

Aベストアンサー

最後までは計算していませんが、次の方法でできそうです。
F_n = (b+c)(c+a)(a+b)(Σ[ABC] k_ABC a^A b^B c^C) とおきます。
(ここで、A+B+C = 2n+1 です。)
展開すると、F_n = (a^2 b + 略 + 2abc)(Σ[ABC] k_ABC a^A b^B c^C) です。
そして、F_n を例えば、a で A+2 回偏微分、a で B+1 回偏微分、
a で C 回偏微分、した後、a,b,c に 0 を代入します。
F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} に対しても同じようにします。
このようにすると、例えば C > 0 であれば、
k_ABC (A+2)!(B+1)!(C)! = (2n+1)! となり、係数が得られます。

Qn次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a

n次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a^1)^2+・・・+(a^n+1)^2=1}が可微分多様体の構造をもつことを示せ。

という問題で、証明の中でいくつかわからないところがあります。わからない部分を≪≫で書きます。

証明)Vi^+={(a^1,・・・,a^n+1)∈S^n|ai<0}
   Vi^-={(a^1,・・・,a^n+1)∈S^n|ai>0} (i=1,・・・,n+1) とおくと
≪これらはS^nの開集合でありS^nを覆っている。≫←この部分は当たり前に言えてしまうのでしょうか?
≪これらのVi^+,Vi^-がR^nの開集合E^n={(x^1,・・・,x^n)∈R^n|(x^1)^2+・・・+(x^n)^2<1}と同相であることを示す。≫←何故、同相であることを示すのでしょうか?

写像φi:Vi^+→E^n  φi^-1:E^n→Vi^+を実際に移していく。
この後は何とかわかるのですが最初の方の疑問をどなたかお願いします。

Aベストアンサー

≪これらはS^nの開集合でありS^nを覆っている。≫
開集合であることも、ほぼ自明ですよね。
本当に証明するなら、Vi^+(あるいはVi^-)の任意の点の近傍が、Vi^+(あるいはVi^-)に含まれることを言えばいいです。
また、
V0^+ ∪ V0^- ∪ … ∪Vn+1^+ ∪ Vn+1^- = S^
なんで、実際、覆ってますよね。

≪これらのVi^+,Vi^-がR^nの開集合E^n={(x^1,・・・,x^n)∈R^n|(x^1)^2+・・・+(x^n)^2<1}と同相であることを示す。≫
何故?って、これは多様体の定義そのものです。

多様体というのは、一言で言えば、つまり、
「局所的にユークリッド空間と(同相だと)みなせるような図形のこと」です。
とりあえず、Wikipediaのページの説明を見て、多様体とは何なのか直感的な理解をつかんでください。
http://ja.wikipedia.org/wiki/%E5%A4%9A%E6%A7%98%E4%BD%93


このカテゴリの人気Q&Aランキング

おすすめ情報