ちょっと変わったマニアな作品が集結

大陸西岸に位置すると気温の年較差が小さいと考えられるのはなぜですか?

また温暖湿潤気候が西岸海洋性気候より気温の年較差が大きくなる事はなぜですか?

A 回答 (2件)

大陸西岸では、海流と偏西風の影響でしょう。



北半球・南半球とも、中緯度地方には地球の自転に起因する「西から東向きの風」(偏西風、貿易風)が吹きますので、この地域で大陸の西側に水温の比較的一定した海流があれば、偏西風で運ばれてくる気温もほぼ一定になるので、年間の温度変化は小さくなります。

↓ 偏西風
http://www.weblio.jp/content/%E5%81%8F%E8%A5%BF% …
http://selfyoji.blog28.fc2.com/blog-entry-3323.h …

「温暖湿潤気候」は、日照によって「地面・海面・気温の上昇→上昇気流→雲→雨」という現象が起こりやすい地方の気候ということであり、四季の変化が大きく、高温多雨、冬に低温少雨となることが多いようです。このため、年間の最高気温は高く、最低気温は低くなる傾向があるのだと思います。
    • good
    • 2
この回答へのお礼

ありがとう

わかりました!ありがとうございました

お礼日時:2015/12/21 18:00

> 陸西岸に位置すると気温の年較差が小さいと考えられるのはなぜですか?


どこの大陸か特定したものでなければ回答は存在しない。
当てはまるのは北半球の大陸ですけどね。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q世界の気温の違いとその原因

世界の気温についてです。
ユーラシア大陸の東岸と、西岸の気温を比較すると、前者は、気温の年較差が大きく、後者は年較差が小さいと思うのですが、その原因は何でしょうか。

また、南米大陸や、アフリカ大陸の西岸が東岸に比べて気温が低い原因は何なのでしょうか。

Aベストアンサー

これは偏西風帯(中緯度)に限っていえることです。西岸の場合、海上を吹く強い偏西風の影響が強くなり、年中、海洋性気候(湿潤で気温の年較差は小さい)に近い状態になっています。一方、東岸は障害物の多い陸上を偏西風が吹き抜け、上空を除いてかなり弱いものとなっています。従って季節風の影響の方が強くなり、夏は海洋性気候、冬は内陸性気候の影響を受けるわけです。
 南米大陸やアフリカの例は偏西風帯ではなく、逆の熱帯偏東風(貿易風)帯のことでしょうから、逆となるわけです。
 #1が挙げられた海流についてはほとんどこうした恒常風による吹送流ですから、矛盾する回答ではありません。

Q過冷却について

過冷却はなぜ起こるのですか?
現象としの理論は大体わかったのですが、それがエネルギー的にどうなのか、がいまいちつかめません。
教えてください。

Aベストアンサー

過冷却がなぜ起こるのか?と問われれば、その答えは「融点以下の液相は固相として存在するのが熱力学的に最も安定だが、実際に凝固するためには「核発生」というきっかけが必要だから」という答えになります。

過冷却現象はエネルギー的な安定の観点からだけでは説明できません。動的な成長理論(核発生理論)を考えて初めて説明されます。
エネルギー収支からの検討は「ある温度(と圧力)のもとで、その物質はどんな状態として存在するのが一番安定か」を教えてくれます。例えば氷点下1℃なら「水は固体として存在するのが安定」です。しかし「どれくらいの時間をかけたらその状態に至るのか」は教えてくれません。その状態に1秒で移行するかも知れませんし、1億年かかるかも知れません。

「熱力学的に安定ではないのだが存在できている」例で、一番分かりやすいのがダイヤモンドでしょう。常温常圧における炭素の安定相はグラファイトでありダイヤモンドではありません。ダイヤモンドは本来、常温常圧では存在してはいけない物質なのです。
しかしダイヤモンドがグラファイトに転化するには、とんでもなく高いエネルギー障壁を乗り越えて構造を組み換えねばなりません。この組み換えが起こる確率は非現実的なほどに低いので、事実上常温常圧でもダイヤモンドはダイヤモンドのまま存在できます。

0℃以下になった水も、その安定相は当然に固体である氷です。ところが上記のダイヤモンド→グラファイトの場合と同様、水が氷に変化するにはある障壁を乗り越えなければなりません。実際にはその障壁は大して高くないので水を凍らせるのは別に難しくないのですが、いずれにしても「きっかけが必要」とは言えます。
水に限らず液相→固相の変化において、このきっかけ(あるいは障壁)に相当するのが「核発生」です。核発生理論についてはすでに十分な検討がなされ、学説としては確立しています。

いま液体が融点以下に冷やされて、下の図のように液体の中に小さな固体の粒(核)が発生したとします。この粒は大きく成長できるのでしょうか、それともやがて消滅してしまうのでしょうか。

 液体
   / ̄\
   │固体 │
   \_/

この場合のエネルギー収支を考えてみると
・液体が固体になったことによりエネルギー的に得した分(潜熱放出)

・液体と固体との境界が生じたことによりエネルギー的に損した分
があります。後者のことを「界面エネルギー」などと呼びます。界面エネルギーの概念はややなじみにくいかとも思いますがとりあえずは、異なる相が接している場合にその部分に余分なエネルギーが必要になる、と理解すればよいでしょう。
さて、液体が固体になったことによる自由エネルギー低下分は固体部分の体積、すなわち半径の3乗に比例します。後者は表面積に比例しますから、結局半径の2乗に比例します。これらを差引きして考えると、半径rが大である核ほどエネルギー的に安定であることになります。逆に小さな核はエネルギー的に不安定なため、やがて消滅してしまうことになります。
「小さな核はやがて消滅してしまうのであれば、いつまでたっても核は成長できないのではないか?」
これもおっしゃる通りです。しかし実際には核は生成します。それはどういうことかと言うと、分子は常に離合集散を繰り返しているわけですが、その集合体がたまたま生き残れるために必要な大きさに(確率的に)達したとすると、その先は安定して成長できるようになるからです。

もう少し、数式も取り入れながら説明したいと思います。
いま液相中にnモルの固相が析出し半径rの結晶相(固相)が発生したとします。その場合の自由エネルギー変化ΔG(n)は
ΔG(n)=4πr^2 γ-nΔμ  (1)
と表されます。γは液相-固相の界面エネルギー、Δμは1 molあたりの自由エネルギー変化です。Δμは過飽和度(過冷却度)の関数であり、過飽和度が大きくなればΔμも大きくなります。

析出する結晶相を球形に近似すれば、結晶相のモル体積をνとして
ΔG(r)=4πr^2 γ-(4πr^3 Δμ)/3ν  (2)
と表されます。
(2)をrで微分して0に等しいとおくと、ΔG(r)が極大をとるrの値が
r=2γν/Δμ  (3)
と求まります。
このrの値を臨界半径(臨界曲率半径)などといいr*で表します。これ以上大きいサイズの原子クラスター・分子クラスターであれば、大きくなればなるほど自由エネルギーが下がりますから安定して成長することができます。
Δμを大きくすれば、換言すれば過冷却度を大きくすればr*は小さくなり、確率的なゆらぎで発生した核は小さいものでも生き残れるようになります。よって水の場合、0℃ではすぐに凍らなくとも、-1℃、-2℃と温度を下げればΔμが大きくなり、ついには発生した核が安定して成長し次々と凍ることになります。これが過冷却現象の正体です。
核発生についてご興味があれば参考ページの[1]などもご覧ください。

ついでに、正しい知識について整理しておきましょう。
水を0℃以下の場所に置けばいずれはその場所と同じ温度になるのは確かです。そしてその温度になるのであれば、どれだけ時間がかかろうとも最終的には凍ります。大気圧で0℃以下の環境における水の安定相は、液体でなく固体だからです。「大気圧で0℃以下の環境で、液体の水は平衡状態にはない」なんて当たり前のことを言っているに過ぎません。
過冷却によって0℃以下の水が液体の状態を取りうるのは事実ですが、それは過渡的な現象に過ぎません。「いずれは」と言うなら仮に過冷却がおきようとも、水は最終的に「氷になる」というのが正しい帰結です。過冷却がおきたからといって、0℃以下の環境において水が安定相となることはあり得ません。

また過冷却の水が凍り始めれば確かに潜熱を放出し水の部分の温度は上がります。しかし水の部分の温度が0℃になったからといって凝固が停止するわけではありません。0℃(より厳密に言うなら水の融点)において、水と氷は任意の割合で共存できます。「過冷却状態の水の当初の温度によって、0℃になった時の氷水の氷/水の分量が違ってくる」というのは何かの間違いでしょう。水/氷の系と外界との間にエネルギーのやり取りがないなら分量は変わってきますが、今は「系を0℃に保つ」という条件を付けているのですから、系と外界との間にエネルギーのやり取りがあることは前提となっています。
「-80℃の過冷却状態の水なら、わずかの刺激で全部凍る」というのは間違いではありませんが、「-80℃より高温の過冷却状態の水なら、必ず水の部分が残る」というのは間違いです。上記と同様に外界との間にエネルギーのやり取り(具体的には系からの熱の排出)があるからです。外界とのエネルギーのやり取りがない(完全断熱条件)なら正しいです。

【参考ページ】
[1] 核生成 http://www.jsup.or.jp/shiryo/tenbo.html#h13
「第3章 無容器浮遊溶融プロセシング 資料(2)」のpdfファイルをダウンロードしてお読み下さい。

参考URL:http://www.jsup.or.jp/shiryo/tenbo.html#h13

過冷却がなぜ起こるのか?と問われれば、その答えは「融点以下の液相は固相として存在するのが熱力学的に最も安定だが、実際に凝固するためには「核発生」というきっかけが必要だから」という答えになります。

過冷却現象はエネルギー的な安定の観点からだけでは説明できません。動的な成長理論(核発生理論)を考えて初めて説明されます。
エネルギー収支からの検討は「ある温度(と圧力)のもとで、その物質はどんな状態として存在するのが一番安定か」を教えてくれます。例えば氷点下1℃なら「水は固体として存在...続きを読む

Q回路に電流が流れないのはなぜか?

すいません、下記サイトの第2問の問3番の解説を読んでいただけませんか。
わからなくて困っています。
そこの記述で、

「題意より、回路図は右図(上)のようになる。但し、
導線は等電位なので、中央にある上下の2つの抵
抗には電流が流れない。(V = RI より電位差がなけ
れば電流は流れず、抵抗としての機能をしない)」

とあるのですが、分かりません。
記述のとなりにあります図だけ見ていただきたいのですが、
なぜあのような抵抗の回路では、中央上下ふたつの抵抗には
電流がながれないのですか。「等電位」というのに気付きません。
お願いします。

http://www.ftext.org/center/phys1_2008_ver1.pdf

Aベストアンサー

解説は上下の抵抗の左右に電位差が無い事を理由に電流が流れない事を説明しております。(電位差が有って初めて電流が流れるので)

電位差が無い説明は他の方の説明を見れば判ると思いますが一応参考までに説明します。
「同一の銅線上の電位差は0V」
(例:回路図において、左上の抵抗右の導線と、中上の抵抗左の間の導線には電位差が無い)
なので、抵抗を挟まない導線は全て同電位。
したがって、中上の抵抗の左右、中下の抵抗の左右共に同電位となり、中の上下の抵抗には電流が流れないと言えます。


別の説明です。(オームの法則より)

2Ωの抵抗と4Ωの抵抗が並列回路で並んでた場合は、オームの法則より2Ωの抵抗に2倍の電流が流れます。
4Ωと1Ωだった場合は1Ωに4倍の電流が流れます。
この事から
:並列回路において、流れる電流は抵抗に反比例する。

これを踏まえて、解説図の中は上下に抵抗が有り、真ん中が抵抗がない(0Ω)状態です。

この様な場合、並列回路の特性を当てじゃめると、流れる電流は「上R/銅線の抵抗」になり、問題の理論上導線の抵抗は0Ωなので、導線に流れる電流は抵抗と比較すると∞倍(無限大)の電流になります。(下Rに付いても一緒)

これを満たすケースは「抵抗に電流が流れない」しか無いので、抵抗を無い物として扱う事が出来、真ん中の図の様な回路に置き換えられます。

解説は上下の抵抗の左右に電位差が無い事を理由に電流が流れない事を説明しております。(電位差が有って初めて電流が流れるので)

電位差が無い説明は他の方の説明を見れば判ると思いますが一応参考までに説明します。
「同一の銅線上の電位差は0V」
(例:回路図において、左上の抵抗右の導線と、中上の抵抗左の間の導線には電位差が無い)
なので、抵抗を挟まない導線は全て同電位。
したがって、中上の抵抗の左右、中下の抵抗の左右共に同電位となり、中の上下の抵抗には電流が流れないと言えます。
...続きを読む


人気Q&Aランキング