(1)
lim(n→∞) n^k e^(-n) = 0 (kは任意の自然数)
の証明に関して本に、
    e=(1+h) (h>0)
だから
    e^n = Σ(j=0~n) nCj h^j > nC(k+1) h^(k+1)    …(i)
従ってうんぬんと書いてあったのですが、(i)の不等号が何故成り立つのか分かりません。
kに対しあるn0があってn>n0に関して(i)が成り立つという事を省略して書いているのかなと想像してるのですが
そこで止まってしまっています。
(i)の不等号が成り立つ所以を教えてください。

(2)
lim(n→∞) n^2/a^n
この極限値およびその導き方を教えてください。
(ひょっとしたら(1)の応用で行けるのかな?)

(3)
lim(n→∞) a^n/n!
これに関しては全く糸口が見えません。


以上3題、よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

こんばんは。



(1)について
これは明らかですよ。
e=(1+h)^n
=nC0+nC1×h+nC2×h^2+........+nCn×h^n
>nC(k+1)×h^(k+1)     (0<k+1<n)
ですよね。kは任意の自然数ですから問題は
k+1<n がいえるのか
ということですが、最終的にnは∞にもっていくのですから
最初からnはめちゃめちゃ大きい数だとしておいてかまいませんよね。
だからk+1よりも大きいnをもってきて(i)の不等式などを
議論すればよいのです。
分かりましたでしょうか。
念のため、lim(n→∞) n^k e^(-n) = 0 の証明もかきます。
(i)の不等式の逆数をとって両辺にn^kをかけます。すると
n^k e^(-n) <n^k/(nC(k+1)×h^(k+1))
右辺の分子はnのk次式、分母はnのk+1次式ですから
nを∞にもっていくと右辺は0に行きますね。
左辺は当然0より大きいのでハサミウチでOKです。

(ii)について
>ひょっとしたら(1)の応用で行けるのかな?
その通りです。(1)のeが自然対数の底にみえて分かりづらいですが
eに関しては
>e=(1+h) (h>0)
という条件しかないのですから
1より大きい全ての数eに対して(1)は成り立ちます。
よって、
a>1 のとき lim(n→∞) n^2/a^n =0
また、0<a<1のときはa^nは0に向かうので、明らかにlim(n→∞) n^2/a^n =∞
ですね。

(3)はquotaniさんの通りです。
    • good
    • 0
この回答へのお礼

どうも。いつもお世話になります。

実はその後自力で分かったんですよ。(i)の成り立つ訳。
でも理解するまでにかなり苦労しました。それをあっさり明らかと言いきっちゃうshushouさん、すごいっす。

これからもよろしくお願いします。

お礼日時:2001/06/18 00:44

ついでに(2)も


こいつにはa>1って条件がほしい。
ロピタルの定理(分母分子をそれぞれ微分しても極限値は等しい)を使います。
lim(n→∞) n^2/a^n
=lim(n→∞) 2n/(a^n*loga)
=lim(n→∞) 2/(a^n*(loga)^2)
=0
当然aが負の数だと対数が定義できないし0<a<1だとわけがわからなくなるので
a>1っていう条件がほしいんです。
    • good
    • 0
この回答へのお礼

残念ながらロピタルの定理はまだやってないんですよ。
使えば解ける事を頭に入れておこうと思います。

a<0だと嫌ですけど0<a<1なら∞に発散で別に問題ないんじゃないですかね?
分子は小さくなるし分母は大きくなるから。

ともあれご回答ありがとうございました。

お礼日時:2001/06/18 00:38

とりあえず(3)について(他のはネットで見ると何がなんだかわからないから)。


このときa>0ですよねぇ?そうじゃなかったらすんまへん。

lim(n→∞) a^n/n!

N>2aかつN<nなるNを仮定します。
これのnまでの和を求めると
(a/1)*(a/2)*(a/3)*....*(a/N)*(a/(N+1))*......*(a/n)
<(a^N/N!)*(a/N)^(n-N)
<(a^N/N!)*(1/2)^(n-N)--------(イ)
ここで(イ)のnを無限大にする
lim (a^N/N!)*(1/2)^(n-N)
n→∞          ∵n→∞の時(1/2)^(n-N)→0
=0
(イ)が0に収束しました。
a^n/n! < (a^N/N!)*(1/2)^(n-N)
かつ左辺は正の数なので
lim(n→∞) a^n/n! = 0
以上
    • good
    • 0
この回答へのお礼

良く分かりました。
ありがとうございました。

お礼日時:2001/06/18 00:18

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Qlim[(h,k)→(0,0)](h^2 + 3yk^2 + k^3)/√(h^2 + k^2)=0の証明は?

lim(h^2 + 3yk^2 + k^3)/√(h^2 + k^2)=0
(h,k)→0

を極座標変換とかせずにごく普通にεδで証明したのです。

0<∀ε∈R,0<∃δ∈R;0<√(h^2 + k^2)<δ⇒(h^2 + 3yk^2 + k^3)/√(h^2 + k^2)<ε
ですがδをどのように採ればいいのでしょうか?

Aベストアンサー

えっと,
√(h^2 + k^2) = δ とおくと
|h^2 + 3yk^2 + k^3| ≦ δ^2 + |3y|δ^2 + δ^3 = δ(δ + |3y|δ + δ^2)
なので
|(h^2 + 3yk^2 + k^3) / √(h^2 + k^2)| ≦ δ + |3y|δ + δ^2.
この右辺がεより小さいという条件からδを出せばいいのかな?

Q何故lim[n→∞](a_n-1)/(a_n+1)=0⇒lim[n→∞]a_n=1?

識者の皆様おはようございます。

lim[n→∞](a_n-1)/(a_n+1)=0⇒lim[n→∞]a_n=1
を示すのに困っています。
定義に従って書くと仮定は
0<∀ε'∈R,∃m'∈N;m'<k⇒|(a_k-1)/(a_k+1)-0|<ε'…(*)
となり、
これから
0<∀ε∈R,∃m∈N;m<k⇒|a_k-1|<ε…(**)
を導かねばならないのですがなかなか(*)から(**)を導けません。
どのようにして導けますでしょうか?

Aベストアンサー

対偶を使えばいいでしょ。つまり(**)の否定から(*)の否定を導けば良い。

 (**)を略記なしに書くと、
∀ε((ε∈R∧0<ε)⇒∃m(m∈N∧∀k((k∈N∧m<k)⇒|a_k-1|<ε)))
であり、その否定は
∃ε((ε∈R∧0<ε)∧∀m(m∈N⇒∃k((k∈N∧m<k)∧((a_k-1)≧ε∨-(a_k-1)≧ε)))
です。質問者さん流に書けば
0<∃ε∈R,∀m∈N, m<∃k∈N;((a_k-1)≧ε∨-(a_k-1)≧ε)…~(**)
とでもなりますか。すると(*)の否定は
0<∃ε'∈R,∀m∈N, m<∃k∈N;((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')…~(*)
となりましょう。

 で、~(**)⇒~(*)を証明すりゃ良い。まず~(**)だとすると、ε, m, kを固定したとき、
[1] (a_k-1)≧εの場合、(ANo.1の計算を利用すると)
(a_k-1)/(a_k+1) = 1-2/(a_k +1)≧1-2/(2+ε)>0
[2] -(a_k-1)≧εの場合も同様に、
-(a_k-1)/(a_k+1) = -(1-2/(a_k +1))≧2/(2-ε)-1>0
です。
 さてここで、
0<ε'∧((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')
が成り立つようなε'(ただしε'は、m, kに依らずεだけで決まる)の具体例をひとつ構成すれば良いわけです。

対偶を使えばいいでしょ。つまり(**)の否定から(*)の否定を導けば良い。

 (**)を略記なしに書くと、
∀ε((ε∈R∧0<ε)⇒∃m(m∈N∧∀k((k∈N∧m<k)⇒|a_k-1|<ε)))
であり、その否定は
∃ε((ε∈R∧0<ε)∧∀m(m∈N⇒∃k((k∈N∧m<k)∧((a_k-1)≧ε∨-(a_k-1)≧ε)))
です。質問者さん流に書けば
0<∃ε∈R,∀m∈N, m<∃k∈N;((a_k-1)≧ε∨-(a_k-1)≧ε)…~(**)
とでもなりますか。すると(*)の否定は
0<∃ε'∈R,∀m∈N, m<∃k∈N;((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')…~(*)
となりましょう。

 で、~(**)⇒~(*)を証明すりゃ良い。まず~(**)...続きを読む


このカテゴリの人気Q&Aランキング

おすすめ情報