MITのOpen Courseware で熱力学、統計力学を勉強していますが、最初のところでつまずいています。

下記のリンクの最初のページ(ページ番号13、英語)のところがよく理解できません。このテキストでは、まず力学的なモデルでエンタルピーを説明して、その類似としてHelmholtz Free Energyを説明していっていますので、これを理解できるとHelmholtz Free Energy の式なども感覚的にわかるのではないかと思い、理解しようと努めています。

http://ocw.mit.edu/courses/physics/8-333-statist …

微分の記号を使い分けるため、 「d」、「d‘」 と 「δ」とさせてください。テキストではd の上に線が入っていますが、入力できないので「d‘」で代用させてください。

このケースは、伸びていない初期状態のバネ (x=0) という系に急に重りをつけることで、バネが一定の重力の影響で上下に振動しだして、しばらくたったところで、摩擦で(真空でのばね自体の摩擦を想定させてください。)振動が減衰し、最後に伸びた状態(重力と釣り合った状態, x = mg /K )で均衡に達する(ポテンシャル (1/2 Kx^2 - mgx ) が最小になる)ということだと私は理解しています。断熱ですが (d’Q=0) 、 摩擦のためにばねの温度が上がるという理解です。

ここからわからないところですが、テキストでは外部が系にした仕事は、(外部が系にした仕事を正とする)

d’W ≤ J·δx  Jは一定    ----(式1)

で、 d’Q=0 及び、δE= d’W+ d’Q なので、

δE ≤ J·δx          ----(式2)

とありますが、ここあたりからわからなくなります。J·δxはたぶん、mgx だ理解しています。つまり、均衡状態ではないので、熱力学では直接扱えないがバネの長さは変化しているので、δxと書いているのだと思います。

ただ、δE はどのように理解したらよろしいでしょうか?

テキストでは δH は 変数だが、状態の関数は含まれていない(スプリングについた重りの速度など)が変わっていく中で、均衡に近づいていくHの変分と書いてありますが、よくわかりません

外部からの仕事は mgx でそれがばねを伸ばすのに使われるのが 1/2 Kx^2 バネの温度上昇に回る部分が mgx – 1/2 K x^2 となり、合計としては上記の不等号(式2)とは違い、δE = J·δx ではないかと思っています。

また同様にばねにゆっくり少しずつ重りをつけて伸ばした場合の時の力をFとして(F は x の関数 – この場合 kx になるかと思います)、式1の代わりに F dx ≤ J·δx というのならわかるのですが、式1のd’W とは何でしょうか?(私の理解では F dx= d’W は均衡状態のみで成り立つと思いますが、式1は静的のものを扱ってはいないという理解です。)

さらにテキストは

δH≤0 (H=E - J·x) ----(式3)

と進んでいますが、そもそも、δEがなにかを意味するかわかっていないため、δHがなにかもよくわかりません。

さらに次の式で δH が dH に変わり

dH = dE - d(J ·x) = TdS + J·dx - x·dJ - J ·dx = TdS - x·dJ ----(式4)

となっていますが、ここも普通の微分の計算としてはわかるものの、δHが dHにかわったあたりなど、十分理解できていません。

長々となりましたが、お知恵をお借りできると助かります。
(講義のビデオも見ましたが、この点はわかりませんでした。)

質問者からの補足コメント

  • 再度の回答大変ありがとうございます。
    ご指摘のポイントがまだなかなか理解できていないところで、重ねての質問になり恐縮ですが、ご教示いただければ大変ありがたいです。

    私の理解では、このような減衰運動では、熱力学的な平衡に達する前のまだバネが動いている間の全体のエネルギーは

    A. (バネの伸びによるエネルギー) + B. (バネのエントロピーによるエネルギー) + C.( バネの運動によるエネルギー)

    になり、これはエネルギー保存則により、外からの仕事である、 Jδx と 一致するのではないかと思います。(外からの熱の出入りはゼロ)

    (補足に字数制限があるので分割します)

    No.2の回答に寄せられた補足コメントです。 補足日時:2016/02/22 21:39
  • (続き)
    テキストの説明によると、

    「 δは 変数だが、状態の関数のための変数には含まれていない変数(スプリングについた重りの速度など)が変わっていく中で、均衡に近づいていく変分」(下手な翻訳ですいません)

    と書いてあることからいうと Cのバネの運動によるエネルギーは入らないので(重りの速度は熱力学に含まれる変数ではないため)、重りが動いている間は、A+BはJδxより小さくなるというのが私の今のところの δE≦Jδx の理解です。

    ただ、その場合だと、釣り合って熱力学的平衡に達した場合は 上のCはゼロになるので、δE=δA+δB= Jδxになるかと思っています。(この場合は平衡になっているので、Jδx = J dx でしょうか?)

      補足日時:2016/02/22 21:40
  • (続き)
    また、この式

    H=E - J·x

    では、Eがバネのエントロピーと長さから求められるバネの持っているエネルギー(静止しているとき)、 J·xが、そのエネルギーのうち、外からの一定の重力による仕事で供給された部分と理解しています。今回の場合はQがゼロなので、バネのエネルギーはすべて外からの重力による仕事で供給されるため、差し引きHはゼロになるのではないかと思ってしまいます。

    おおきな勘違いかもしれませんが、δが回答者様のおっしゃる「あらゆる変数の変化の形式に関して」というのはこの場合、平衡に達する前も含めた「あらゆる変数の変化」ということで、上記Cのバネの運動エネルギーの部分の差がHとして補填する必要があるということでしょうか?

      補足日時:2016/02/22 21:41
  • (続き)
    また、2次微分以降とはどう理解したらよろしいでしょうか?平衡時のEに関してはxに対する関数としては 1/2 K x² となるため、xの基準をx_0とするとテイラー展開では

    E(x, S) = E(x_0, S) + K*x_0 *(x-x_0) + (1/2)*K*(x-x_0)²

    となりますが、この2階の部分のことでしょうか?

    長々と書き、またあまり整理ができてない質問の仕方になりますが、すこしでもヒントをいただければ幸いです。

      補足日時:2016/02/22 21:42

このQ&Aに関連する最新のQ&A

A 回答 (3件)

えーと、まず変分をきちんと理解してください。


空間の"仮想変位"を表しているのです。


それに対して、多変数の微分に関しては、全微分の考え方ができます。
微分と変分がやっぱり理解できていないようです。

解析力学は習いましたか?習っていないなら説明は少し厄介です。

δE≦Jδx(where dQ=0:heat exchange)ですから。
力の変分はとりません。
変分原理はエネルギーの最小値を求めるために、その時間、位置における変数を仮想的に変位させて考えることに主眼があります。
従って、xδJなどという変分はありません。
J自身がxを変数としているからです。

対して、偏微分はHの変数で全微分が可能なのです。

多変数のテイラー展開の1次微分までを取ったものが全微分です。
    • good
    • 0
この回答へのお礼

ありがとうございます。解析力学はならったので、復習してみます。

お礼日時:2016/03/01 02:35

変分は仮想変位ですので、「あらゆる変数の変化の形式に関して」エンタルピーを変化させてもδH≦0というのに対して、全微分はテイラー展開の2次微分以降を省略したものであるため、そこには明確な違いがあります。



後半に関して。
δE≦Jδx → δE-Jδx≦0、δE-Jδx=δH(where δH≦0)
であるから、その差をHで補填するため
H=E - J·xとなる。
この微分量が
dH=dE - d(J·x)
となるのは理解できていますでしょうか?
この回答への補足あり
    • good
    • 0

解析力学の変分が入ってきている(δは変分を表します)かと。



基本的に偏微分なんですが、この領域では片方の変数を0にした微分であるため、∂ではなくdなんですが…
全微分の考え方が少し欠落していると思われます。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。

十分わからないので、もう少しかみ砕いて説明していただけると助かります。

テキストでは特に解析力学を使っているというよりも、δは均衡していない段階での変化分、dは平衡(準静的?)ということで使い分けているように書いているようです。(最初のページの一番下。)

それとも、ご回答者様のおっしゃるように、解析力学の変分原理の変分ということであれば、どういう具体的にはどういう変分ということになりますでしょうか?

あと、全微分の考え方とは具体的にはどう理解したらよろしいでしょうか?私は単純に、式4では例えば、

dH = TdS - x·dJ = ∂H/∂S dS - ∂H/∂J dJ

という全微分になっているという理解でしたが、どこの部分が欠落していると考えればよろしいでしょうか?片方の変数を0にしたというところが、よくわかりません。

よろしくお願いします。

お礼日時:2016/02/21 06:39

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qばねと重りについて

 機械力学の内容です。水平面において、滑車つきの重りmを取り付けたばね(ばね定数k)を、壁に取り付けて微小に振動させたときの運動方程式を考えます。水平方向の変位をxとします。
 ここで、バネを角度αだけ傾けて取り付けた場合、水平に取り付けた場合とでは、運動方程式のどのあたりが変わってくるのでしょうか?分かり辛い文章で申し訳ありませんが、どなたかアドバイスをお願いします。
 

Aベストアンサー

微小振動ですからバネ、重りが動いても角度αは変らないと仮定できます。
バネの自然長状態からの伸びをy、対応する重りの変移長さをxとすると、xとyの間には比例関係が成立します。

同じようにバネの復元力と、その結果重りが受ける力(水平分力)の間にもバネが水平の場合と同じように比例関係式が成立します。
この力関係式から、重りはバネが水平だった場合と同じような動き(但し同じバネの動きについて少し短い範囲を動く)の結果となります。

Q中3理科 ばねばかりとバネののび

テストの問題です

この答えが2Nと2Nになるのですが
どうしてでしょうか?

Aベストアンサー

ばねとばねばかりが静止しているといことは、
力が釣り合っているということです。

図1の左側(壁側)にはどんな力が働いているでしょう?

それを考えたら

図1の壁(フック)が図2のばねばかりに変わっただけ
なので、
ばねが5cmになっているわけですから
それぞれのばねばかりの表示はどちらも
2Nになるわけです。

(固定されていないばねの片方を2Nで引っ張ったら
引っ張った方にどんどん動いてしまうでしょ)

QU型の板バネのばね定数について

u型ばねのばね定数のヤング率とせん断弾性係数がわかりません。
ちなみにu型ばねはS50Cです。
初めてなので足りないところがコメントあったらお願いします。

Aベストアンサー

 S50Cは鋼種ですよね?。だとすれば、ヤング率,せん断弾性係数,ポアソン比などは材料定数(材質)なので、U型であろうとなかろうと同じです。JIS規格などに、その公称値が載っていると思います。

 一方、板バネとしてのバネ定数は、同じ材質でも、正確な形状と寸法と厚さの情報がなければ、計算できません。また板バネのどの点をつかんで、押したり引いたりするかでも、バネ定数は変わってきます。押したり引いたりする方向も、指定しないと駄目です。

 これらを補足されても、自分はたぶん駄目です。というのは、こういう計算には分野ごとのノウハウがあるからです。もしくは、あなたの分野では、問題のU型板バネのJIS規格公称値があるかも知れませんよ。

 機械系の方、どなたかいらっしゃいませんか?。

Q「縦横200mmの範囲内で50gの重りを使って250gの重りを50mm

「縦横200mmの範囲内で50gの重りを使って250gの重りを50mm上方に持ち上げなさい」
という問題が出題されました。
てこを使って持ち上げようと思っているのですが、
50mmだけ上方に持ち上げる計算ができなくて困っています。

よろしくお願いします。

Aベストアンサー

「縦」というのは地面に垂直方向の事でしょうか。
でしたらそれは不可能です。
てこでも滑車でも何でも、250gのものを50mm持ち上げるには250×50×g[g・mm・m/s^2]のエネルギーが必要です。
縦が200mmしかない以上、50gの重りを使って得られる位置エネルギーは50×200×g[g・mm・m/s^2]ですので足りません。

縦・横とも地面に水平であれば、5倍の重さの物を持ち上げるてこは腕の長さを1:5にすれば作れます。
例えば腕の長さが40mmと200mmのてこを上下40度づつ振らせれば指定の条件に合います。

Qダイヤフラム型空気ばねの固有周期(ばね定数)

ダイヤフラム型の空気ばねの固有周期を教えてください。
概略の形状は、直径100mmの円筒に側面・上面5mmの隙間のもって蓋上のものをかぶせてあります。蓋と円筒の境は、厚み3mmのリング状ゴムでシールをしてあります。
円筒が振動(例えば30Hz)すると、空気ばねの作用で蓋が逆位相で揺れます。この系の固有周期を計算する方法を教えてください。また、空気ばねの作用を無くして振動を伝えない方法として、蓋に圧力調整弁のようなものを付けたら、と考えていますが可能でしょうか?
    

Aベストアンサー

固有周期は圧力に対する変位(バネ定数)と振動する部分の質量で決まります。
http://ja.wikipedia.org/wiki/%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95
蓋に圧力調整穴を付けたものはエアーダンパーと呼ばれていて自動車などに使われている物と同じです。


人気Q&Aランキング

おすすめ情報