『ボヘミアン・ラプソディ』はなぜ人々を魅了したのか >>

基底状態に比べて励起状態は反応性に富んでいると学びましたが、理由がいまいちわかりません。
もしよろしければ教えて下さい。
お願いいたします。

A 回答 (2件)

>基底状態に比べて励起状態は反応性に富んでいる


この表現は定性的なものなので、例えて言うなら
「満潮時よりも干潮時の方が水位が低い」
みたいなものです。
具体的に満潮時の水位がどれくらいで、
干潮時の水位がどれくらいかは言わないけれど
その性質としてどうだと述べている程度のことです。

>「イオン化ポテンシャル」「電子親和力」「分子軌道」
という記述から判断してたぶん無機化学の話をしてい
るんだろうなと想像はつくので、化学の方でそれぞれ
について聞いてみるのが良いかもしれません。

Na → Na+ + e-
Cl + e- → Cl-
のNa+、Cl-は励起状態とは言わないはず。
(Cl-はエネルギー減ってるし・・・)

分子軌道の方は励起状態と関係あるね。
でも、軌道がややこしいので水素原子で話をすると
水素原子は中心に1個陽子があってその周りに電子が
1個回っています。

電子軌道が軌道が1s,2s,2p,3s,3p,3d・・・・
(数字がエネルギー準位,アルファベットが軌道の種類)
とあって、一番下のエネルギー準位nが
n=1のときが基底状態でn=2,3,4…のときが励起状態。
それぞれのエネルギー準位のエネルギーEnは
En=-13.6[eV]/n^2
これでいくと
E1<E2<E3<E4・・・・・・
とエネルギー準位が高いほどエネルギーは高い。
エネルギーが負なのは基準をどこにとるかだけの問題なので
気にしないで。

要するに、電子が一番下にエネルギー準位にいるのが
基底状態で、それ以外のところにいるのが励起状態。
もちろん分子の場合電子は1個じゃないから下から順に
詰めて行ってという話になるだろうけれど。
そして、基底状態が一番エネルギーが低く、
励起状態は基底状態よりもエネルギーが高い。
これで本質的には間違っていないと思います。

エネルギーが低い方が安定なので
水素原子の場合、光というエネルギーを放出して、
励起状態から基底状態に戻ります。

分子の場合、このエネルギーが何かしらの反応に
必要なエネルギーに使えるから基底状態の分子よりも
反応を起こしやすいって理解で良いんじゃないでしょうか。
    • good
    • 1

簡単に言うと、基底状態の粒子のエネルギーEg


励起状態のエネルギーEeとすると、一般的に
Eg<Eeなので、ΔE=Ee-Egだけ基底状態より
エネルギーを持っているわけです。
このΔEのエネルギー分だけ反応しやすいってこと
なんですが。

ちょっと違うかもしれないけど例を
スチールウールを加熱すると赤くなってものすごい
勢いで酸化されていきますよね。常温で放置してい
るよりもかなり激しく。

この場合、
常温の状態≒基底状態
加熱されてエネルギーを得た状態≒励起状態
と考えれば、励起状態になることによって
酸化という反応を起こしやすくなったと考えると、
反応性に富んでいる=反応しやすい
ということが理解できるのではないでしょうか。

化学の反応では反応にはしきい値があって、
エネルギーがそれ以上にならないと反応が
起こらないとか言うのがあったハズ。
ΔEの分だけ基底状態よりも励起状態の方が
このしきい値が超えやすい。
→反応が起こりやすい=反応性に富んでいる

ということではないでしょうか。
    • good
    • 0
この回答へのお礼

早くもありがとうございます、すごいです!
知識がある方とお見受けしました。
授業のノートを見返してみると「イオン化ポテンシャル」「電子親和力」「分子軌道」とメモしたのを思い出すのですが、これらで説明できるのでしょうか。。う~ん、ボーっとしていて聞いていませんでした。
なかなか私には難しいです^^;

お礼日時:2004/07/16 23:46

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q基底状態と励起状態について

基底状態にエネルギーを与えて、励起状態になる過程で回転や振動のような運動が起こるのでしょうか。それとも、励起状態からエネルギーを放出し、基底状態に戻る過程で回転や振動のような運動がおこるのでしょうか。

Aベストアンサー

基底状態にエネルギーを与えて、励起状態になった『あと』で、回転や振動のような運動が起こります。回転や振動のような運動が起こっている状態を励起状態と呼ぶ、と考えた方が分かりやすいかもしれません。エネルギーを与えて励起状態になる過程の『途中』は、何が起こっているかよく分からないので、どのような運動がおきているのかを考えないのがふつうです。

励起状態からエネルギーを放出して、基底状態に戻ったあとは、回転や振動のような運動は止みます。回転や振動のような運動が起こってない状態を基底状態と呼びます。エネルギーを放出して基底状態に戻る途中の運動については、考えないのがふつうです。

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Q基底状態の鉄の量子数について

基底状態の鉄の、全軌道方位量子数、全方位量子数、全スピン方位量子数がわかりません。最初の二つはどのように違うのかわかりません。またスペクトル項の求め方もよくわかりません。電子がたくさんある場合なので、量子数に全がくっついていると思うのですが、個々の電子の量子数を全部たすという意味ですか?よくわからないのでお願いします。

Aベストアンサー

基底状態にある原子の、全軌道方位量子数(L)、全方位量子数(J)、全スピン方位量子数(S)は、電子配置の表とフントの規則を使って求めます。

(1) 教科書などに載っている電子配置の表から、原子の電子配置を知る。

カリウム原子から亜鉛原子までの電子配置は以下のとおりです。

K :[Ar] (3d)0 (4s)1
Ca:[Ar] (3d)0 (4s)2
Sc:[Ar] (3d)1 (4s)2
Ti:[Ar] (3d)2 (4s)2
V :[Ar] (3d)3 (4s)2
Cr:[Ar] (3d)5 (4s)1
Mn:[Ar] (3d)5 (4s)2
Fe:[Ar] (3d)6 (4s)2
Co:[Ar] (3d)7 (4s)2
Ni:[Ar] (3d)8 (4s)2
Cu:[Ar] (3d)10 (4s)1
Zn:[Ar] (3d)10 (4s)2

この表で、[Ar]はアルゴン原子の電子配置で
Ar:(1s)2 (2s)2 (2p)6 (3s)2 (3p)6
です。

この表から鉄原子の基底状態の電子配置が
Fe:(1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (3d)6 (4s)2
であることがわかります。

(2) 不完全に満たされた副殻に注目する。

(1s),(2s),(3s),(4s)にはそれぞれ、2個まで電子を入れることができます。
(2p),(3p),(4p)にはそれぞれ、6個まで電子を入れることができます。
(3d),(4d)にはそれぞれ、10個まで電子を入れることができます。

鉄原子の基底状態の電子配置では、10個まで電子が入る(3d)に6個しか電子が入っていませんので、(3d)が不完全に満たされた副殻になります。他の電子が入った副殻は、完全に満たされていますから、鉄原子の基底状態では、不完全に満たされた副殻は(3d)だけです(クロムの場合は、(3d)と(4s)の二つが不完全に満たされた副殻になります)。

(3) フントの規則に従って、不完全に満たされた副殻に電子を入れる。

フントの規則1:α軌道から電子を入れて、α軌道が満たされた後に、β軌道に電子を入れる。
フントの規則2:磁気量子数mzが大きい軌道から順に電子を入れる。

s殻の場合   mz,spin
 1番目の電子: 0 α
 2番目の電子: 0 β

p殻の場合   mz,spin
 1番目の電子:+1 α
 2番目の電子: 0 α
 3番目の電子:-1 α
 4番目の電子:+1 β
 5番目の電子: 0 β
 6番目の電子:-1 β

d殻の場合   mz,spin
 1番目の電子:+2 α
 2番目の電子:+1 α
 3番目の電子: 0 α
 4番目の電子:-1 α
 5番目の電子:-2 α
 6番目の電子:+2 β
 7番目の電子:+1 β
 8番目の電子: 0 β
 9番目の電子:-1 β
 10番目の電子:-2 β

鉄原子の基底状態の電子配置では、(3d)に6個電子が入りますので

鉄原子の場合  mz,spin
 1番目の電子:+2 α
 2番目の電子:+1 α
 3番目の電子: 0 α
 4番目の電子:-1 α
 5番目の電子:-2 α
 6番目の電子:+2 β

のように電子が入っています。

(3) LとSを求める。

Lはmzの総和から求めます。

鉄原子の基底状態では、
L=(+2)+(+1)+(0)+(-1)+(-2)+(+2)=2
になります。

Sはszの総和から求めることができますが、sz=1/2(α軌道)または sz=-1/2(β軌道)の関係がありますから、
S=(α軌道に入った電子の数-β軌道に入った電子の数)÷2
の関係式から求めます。

鉄原子の基底状態では、
S=(5-1)÷2=2
になります。

(4) フントの規則を使ってJを求める。

フントの規則3:β軌道に電子が入っていないときは、J=|L-S|。β軌道に電子が入っているときは、J=L+S。

鉄原子の基底状態では、3dのβ軌道に電子が入っていますから、
J=2+2=4
になります。

(5) スペクトル項を求める。

スペクトル項は、一般に

(2S+1) (Lを表す記号) J

とかけます。Lを表す記号は
L=0,1,2,3,4,5,...に対して
 S,P,D,F,G,H,...が対応します。
(2S+1)はLを表す記号の左上に、JはLを表す記号の右下に書きます。

鉄原子の基底状態のスペクトル項は
2S+1=2×2+1=5、
Lを表す記号はD、
J=4ですから

5D4

になります。
----------
カリウム原子から亜鉛原子までの基底状態のスペクトル項は、以下の通りです(間違っているかも知れません。検算していただけると幸いです)。
K :2S1/2
Ca:1S0
Sc:2D3/2
Ti:3F2
V :4F3/2
Cr:7S3
Mn:6S5/2
Fe:5D4
Co:4F9/2
Ni:3F4
Cu:2S1/2
Zn:1S0

基底状態にある原子の、全軌道方位量子数(L)、全方位量子数(J)、全スピン方位量子数(S)は、電子配置の表とフントの規則を使って求めます。

(1) 教科書などに載っている電子配置の表から、原子の電子配置を知る。

カリウム原子から亜鉛原子までの電子配置は以下のとおりです。

K :[Ar] (3d)0 (4s)1
Ca:[Ar] (3d)0 (4s)2
Sc:[Ar] (3d)1 (4s)2
Ti:[Ar] (3d)2 (4s)2
V :[Ar] (3d)3 (4s)2
Cr:[Ar] (3d)5 (4s)1
Mn:[Ar] (3d)5 (4s)2
Fe:[Ar] (3d)6 (4s)2
Co:[Ar] (3d)7 (4s)2
Ni:[Ar] (3d)8 (4s)2
Cu...続きを読む

Q電子軌道のエネルギー準位

電子軌道のエネルギー準位は内に行くほど低くなる、と書いてあるのですがエネルギー準位とは何ですか?

また、電子がエネルギー準位の低いところから埋まっていく理由も教えてください。

Aベストアンサー

例えば次のURLを参考にされてはいかがでしょう。

http://hyper-chemistry.blog.so-net.ne.jp/2011-03-02

Q一分子の基底状態と励起状態の縮退度の求め方

1辺aの立方体に質量mの内部構造のないNコの同種粒子からなる気体がある。
一粒子のエネルギー準位は次のように書ける。
E=h・h(nx・nx+ny・ny+nz・nz)/(8ma・a)
hはプランク定数。nx,ny,nzは自然数。

という問題で
「一分子の基底状態と励起状態の縮退度はそれぞれいくらか」
というのがテストで出たんですがわかりませんでした。
答えあわせをしてくれないので困ってます。
どなたかわかる方いませんか?教えてください(泣

Aベストアンサー

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
すなわち,縮退度は3.

2番目の励起状態は,nx,ny,nz のうち2つが2,残り1つが1というやつで,
これも3通りの可能性があるから,縮退度は3.

つまり,エネルギーを決めると,nx^2 + ny^2 + nz^2 が決まるので,
これに対応する nx,ny,nz の選び方の数が縮退度です.
一般の nx^2 + ny^2 + nz^2 を指定して選び方の数を求めるのはちょっと
複雑そうです.

幾何学的には,nx,ny,nz の3次元空間で,球の半径 nx^2 + ny^2 + nz^2 を
決めたとき,その球面が通る格子点の数はいくつか,と言う問題になっています.

通常は,a が十分大きいとして,エネルギーの連続極限をとってしまいますが,
そこらあたりまで要求されているんでしょうか?

それから,もし粒子が電子だとすると,nx,ny,nz を指定しても,
その他にスピンの自由度2があります.
スピンまで考慮すれば,縮退度は上の計算の2倍になります.

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング