ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

微分積分や線形代数の初歩を自習している初心者です。松坂和夫先生の初心者向けの本が分かりやすいので、他の本も勉強したくなり、Amazonのレビューを参考にしています。

松坂先生の『集合・位相入門』のレビューで、Jimmy_N_Aという人が☆2つ評価で、「空写像を軽視したので、論理的に不整合が多い」と書いています。レビューの主張が正当かどうかはまったくわかりませんが、AからBへの写像で、AあるいはBが空集合ということがあるようです。

手元にある数学序論(柴田敏男著、共立出版)によると、

 Eの各要素xに対応して、Fの要素yが定められているとき、この対応をy=f(x)と書き、EからFへの写像(mapping)fが与えられているといい、f:E→Fあるいは
f
E → Fと表す。 p.31

とあります。この定義ではEとFは空集合ではないことが前提となっているようであり、EやFが空集合のときの写像の定義が読み取れません。そもそも写像とは、EとFの各要素の対応関係を示すものではないのでしょうか。要素がないのに対応関係が考えられるのでしょうか。さらに、空写像というものを考えないと理論として未完成になるのでしょうか。この分野に詳しい方、教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

f: E→F が写像であるということの定義 (いろいろな定義の仕方がありますが, そのうちの一つ) を, もう少し厳密に書くと, 次のようになります:



f は E と F の直積 E×F の部分集合であって, 次の2条件を満たす:
(1) 任意の x∈E に対し, ある y∈F が存在して, (x,y)∈f である.
(2) (x,y_1)∈f かつ (x,y_2)∈f ならば, y_1=y_2 である.

要するに, 任意の x∈E に対して ただひとつの y∈F が存在して (x,y)∈f となるわけです. そこで, この y のことを通常 f(x) と書きます. これが写像です.
(ちなみに, (x,y)∈f といった書き方はあくまで定義のときに必要というだけで通常は使いません. y=f(x) と書いたほうがわかりやすいので. また「f が E×F の部分集合である」というのもあくまで定義の都合であり, 通常は f⊂E×F と書いたりしません. したがって, 普段学習される際はお手元の本の定義の方を頭に入れておけば十分です.)

E が空集合であった場合, E×F もまた空集合です. したがって, その部分集合もまた空集合以外にはありません. そこで, f を空集合とした場合, (1) (2) の条件が共に成立します. なお, (1) が成立するのは, 一般に「任意の x∈E に対し ○○ である」という形式の命題は, E が空集合の場合 ○○ の内容にかかわらず成立する (vacuously true などと呼ばれます) ためであり, (2) が成立するのは「AならばBである」という形式の命題は A が偽のとき B の内容にかかわらず成立するためです.
もし以上の説明がよくわからない場合, 適切な書籍などにあたられることをおすすめします. たとえば『論理と集合から始める数学の基礎』(嘉田勝著) などは多分このあたりを詳しく説明しているはずです (vacuously true は「空ゆえに真」と訳されている).
ちなみに, 公理的集合論は数学を専門とする人でも学んだことがなかったりするので今の段階では気にしなくてよいかと思います. それに対し, vacuously true などの概念は (名称はあまり知られていませんが) 数学をする上での基礎事項です.
なお, お手元の本の「E の各要素 x に対応して、F の要素 y が定められているとき」という説明も, べつに E が空集合でないことを前提としているわけではなく, E が空集合の場合でも可と捉えるのが自然 (「各」が「任意の」と同じ意味だと考えられるので, ここでも vacuously true の概念があてはまる) かと思います.
    • good
    • 0
この回答へのお礼

大変明快な説明をありがとうございます。

写像の定義は手持ちの 集合論入門(赤摂也著、培風館) に同様のことが書いてありました(p.31-42)。写像を直積の部分集合ととらえると、空集合の定義から空写像の存在がいえるわけですね。定義に立ち返って理解することの重要性を学びました。vacuously trueがなぜ成立するかは分かりませんが、紹介いただいた本で勉強したいと思います。完璧にお答えいただいたので、ベストアンサーにさせていただきます。

お礼日時:2016/07/10 08:22

f を集合 X から Y への写像とするとき, べき集合 P(X) から P(Y) への写像 g を,


A ⊂ X で f(A) = B ⊂ Y ならば, g(A) = B, で定めるとします.
特に, A = {a}, B = {b} のとき, g(A) = B は f(a) = b を意味します.
これにより, f ∈ Map(X, Y) と g ∈ Map(P(X), P(Y)) を同一視できます.
そうすると, X が空集合の場合, Map(P(X), P(Y)) は元を 1 つだけ持つので,
その 1 つと同一視される Map(X, Y) の元を空写像と考えれば, 混乱しないと思います.

ただし, X が空集合でなく, Y が空集合の場合, Map(P(X), P(Y)) は空集合です.
よって, その場合は Map(X, Y) も空集合, すなわち, X から Y への写像は存在しない, と考えてください.
    • good
    • 0
この回答へのお礼

回答をありがとうございます。申し訳ありませんが、基礎知識が不足しているようで理解できません。今後この分野を勉強したいと思います。

お礼日時:2016/07/10 08:38

この分野に詳しい方ではないですが、



× 「定義域が空集合の写像(関数)は存在しない(定義できない)」
と思い込んでいる数学者が多いのですが、実は
○ 「定義域が空集合の写像(関数)は唯一存在する」
ことは公理的集合論における定理です。(この元を空写像(関数)とよぶ。)
のようです。参考まで。

http://www.ma.kagu.tus.ac.jp/~abe/sub6.html
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
さっそく教えていただいたサイトを見ましたが、専門知識がないのでまったくわかりません。公理的集合論というものを勉強しないといけないのですね。今後の目標の1つとしたいと思います。
それにしても、普通の写像の定義はすごくわかりやすいのに、空写像なるものの意味がまったく分かりません。元がない集合の対応関係って、いったい何を意味するのやら・・・素人なりの素朴な疑問です。それとも論理的形式的な証明ができることで十分で、意味などは考える必要がないということでしょうか。詳しい方教えていただければ幸いです。

お礼日時:2016/07/09 18:41

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qはじめて位相空間を勉強するのに最もわかりやすい本もしくはサイトを教えてください。

位相空間を勉強しようと思うのですが、まったくわかりません。
ウィキペディア等みても理解できないレベルです。
わかりやすい本、サイト等あれば教えてください。

Aベストアンサー

http://www.math.sci.hokudai.ac.jp/student/kei.html.ja

北大数学科の推薦図書ガイドです.
学部学生への書籍ガイドとしてきちんと考えて
推薦されてますし,名著ぞろいです.
ただし,このガイドの中の「位相空間」のところ
I. M. シンガー & J. A. ソープ「トポロジーと幾何学入門」培風館
これは名著なのは間違いない(実際,とても奥深く面白い)ですが,
初学者には読み通すのはかなり難解だと思います.

推薦ガイドとは別に,個人的に読んだ書籍でお勧めできるものを
易しい順に
・志賀浩二の30講シリーズ『位相への30講』(朝倉)
・松坂和夫『集合・位相入門』(岩波)
・森田紀一『位相空間論』(岩波)

・位相への30講
超初心者向け.
30講シリーズの特徴である,
「内容は少ないが説明が具体的」なのはそのまま.
位相空間が「近さの一般化」であることを強調しており,
寝転んで流し読みすることもできるくらいの平易さだが
感覚的な理解が期待できる.

・集合・位相入門
分厚いがそれは著述が異常なほど丁寧なため.
独習用の教科書として一押し(Amazonのレビューなど参照).
例題や演習問題をすべてこなせば,
初歩の集合論・位相空間論はまずクリアできるのではないかと思う.
学部で履修する程度の内容はほぼすべて含まれている.
この著者の岩波からでている一連の書籍群はどれも定評があり
確かに面白い良書が多い.

・位相空間論
岩波全書なので,上記二冊に比べれば専門的な書籍.
内容そのもののレベルは大学院修士課程程度までか.
修士の学生でこの本にでていることを
知らないのはかなり問題だと思う.
位相空間の分離公理などが詳しくでている.
初歩をマスターした段階で読むべき書籍.
平易な書籍ではないが,簡潔にして的を得た内容がぎっしり.
著者は特性類の専門家であり,その方面の大家である.
残念ながら出版社品切れ・重版未定.
図書館で借りるしかないが数学科図書館であれば
まず間違いなく所有しているくらいの名著.

#岩波全書のいい本って今では「重版未定」が多いのが残念

http://www.math.sci.hokudai.ac.jp/student/kei.html.ja

北大数学科の推薦図書ガイドです.
学部学生への書籍ガイドとしてきちんと考えて
推薦されてますし,名著ぞろいです.
ただし,このガイドの中の「位相空間」のところ
I. M. シンガー & J. A. ソープ「トポロジーと幾何学入門」培風館
これは名著なのは間違いない(実際,とても奥深く面白い)ですが,
初学者には読み通すのはかなり難解だと思います.

推薦ガイドとは別に,個人的に読んだ書籍でお勧めできるものを
易しい順に
・志賀浩二...続きを読む

Q一様連続でないの厳密な証明は?

微分積分の期末テストで次の問題が出ました。

次の命題の正誤を答えよ。ただし理由も与えること。

命題:関数f(x)=x^ 2は区間[0,∞)で一様連続である。

この問題で自分は次のように解答しました。

(証)αを与えられた区間内の任意の要素とし、εを任意の整数とする。

あるδとしてmin.(ε/2|α|+1,1)とする。

このとき|x-α|<δ⇒|f(x)-f(α)|=|x^2-α^2|=|xーα|・|x+

α|<・・・・・(略)<δ(2|α|+1)<ε

となり、故にf(x)=x^2は区間[0,∞)で一様連続でない。(なぜなら、δがε

だけでなくαにも依存するから)

この解答で一応マルはもらえたのですが、はじめにδを上のようにしたものだけを考

えていい理由は何なんですかね?もしかしたらεだけでδを表せるかもしれないの

に。考えてはみてるんですがなかなか納得のいく答えが見つかりません。よかった

ら力になってください。よろいくお願いします。

Aベストアンサー

ikecchiさんご自身で疑問を感じるのは当然で、ikecchiさんの解答は実は
「関数f(x)=x^ 2は区間[0,∞)で連続である」
ことの証明にはなっていますが
「関数f(x)=x^ 2は区間[0,∞)で一様連続でない」
ことの証明にはなっていません。その理由はご自身で書かれている通り
「ある」δについてαに依存することを証明しても、「任意の」δがαに依存する
ことは証明されないからです


「一様連続でない」ということを証明するには何を示せば良いのでしょうか。
変数の任意性や依存関係が絡み合うこの種の問題(ε-δの応用問題は大体そうです)
を考える時は命題を論理式で書いておくと証明すべきことが見やすくなります。
まず「関数f(x)が区間[a,b)で連続である」を論理式で書くと
∀ε>0 ∀α∈[a,b) ∃δ>0  ∀x(|x - α| < δ ⇒ |f(x) - f(α)| < ε)
でしたね。つまりこの場合δはεとαの両方に依存しても構わない。
一方「関数f(x)が区間[a,b)で一様連続である」を論理式で書くと
∀ε>0 ∃δ>0 ∀α∈[a,b) ∀x(|x - α| < δ ⇒ |f(x) - f(α)| < ε)……(1)
となります。変数δとαに関する記述の位置が入れ替わっていることに注意して下さい。
この場合δはεだけに依存します。
そして「関数f(x)が区間[a,b)で一様連続でない」という命題はこれの否定命題ですから
∃ε>0 ∀δ>0 ∃α∈[a,b) ∃x(|x - α| < δ かつ |f(x) - f(α)| ≧ ε)……(2)
となります。(論理式の変形規則についてはご存知でしょうね)

つまり「関数f(x)=x^ 2は区間[0,∞)で一様連続でない」
ことを証明するためには,具体的なεと任意のδをとってきてそのε,δの組に
対して(2)式の括弧内の条件を満たすようなα,xがとれることを示せば良いのです。
これを示しましょう。

ε=1/2とし,任意のδを1つ固定し, α≧ 1/(2δ) とします。
x= α+(δ/2) とするとxは(1)式の前提条件
|x - α| < δ を満たします。しかし
|f(x) - f(α)|= |x^2 - α^2| = | (α+(δ/2))^2 - α^2 |= | αδ + δ^2/4 |≧ 1/2 =ε
ですから一様連続でないことがいえました。          ■

証明が間違っているにも関わらず先生が○をくれた理由は推測するしかありませんが
(1)一応「一様連続でない」という結論はあっているので、
証明も正しいものと勘違いした
(2)実は先生もわかってない(まさかね^^;)
(3)一応「一様連続でない」という結論はあっていることと
証明を読んで(間違いではあるものの)一様連続性についても
一応は理解しているものと判断して○にした。

というところが考えられますが本当のところ先生に聞いてみた方が良いでしょうね。

ikecchiさんご自身で疑問を感じるのは当然で、ikecchiさんの解答は実は
「関数f(x)=x^ 2は区間[0,∞)で連続である」
ことの証明にはなっていますが
「関数f(x)=x^ 2は区間[0,∞)で一様連続でない」
ことの証明にはなっていません。その理由はご自身で書かれている通り
「ある」δについてαに依存することを証明しても、「任意の」δがαに依存する
ことは証明されないからです


「一様連続でない」ということを証明するには何を示せば良いのでしょうか。
変数の任意性や依存関係が絡み合うこの種の...続きを読む

Q∫log sinx dxや∫log cosx dx のやり方

∫log sinx dxや∫log cosx dxの計算をやっているのですが、置換積分や部分積分をフル活用しているのですが、先が見えません。助けて下さい。

Aベストアンサー

こんにちは。不定積分ではなく定積分でお答え
します。広義積分を習っていることを仮定しますが…
でも、
∫_{x=0~π/2}log (sinx) dx
についてだけです。
まず、上の積分が収束するかという問題があります。
(実際には、絶対収束します。)
この収束を示すことが必要なら補足しますので、
ここでは省きます。
(ヒントは(√x)log(sinx)に対してロピタルの定理を使い、x→+0とします。)

以上のことを頭の隅において積分を計算します。そこで、
I=∫_{x=0~π/2}log (sinx) dx
とおきます。ここで、xをπーxに、又はπ/2-x
と変数変換すると
I=∫_{x=π/2~π}log (sinx) dx
I=∫_{x=0~π/2}log (cosx) dx
となります。これらは、右辺の広義積分が収束して
値がIに等しいことを意味します。一方、
2I=∫_{x=0~π}log (sinx) dx
であり、x=2tとおくと
I=∫_{x=0~π/2}log (sin2t) dt
 =∫_{x=0~π/2}log (2 sint cost) dt
 =∫_{x=0~π/2}log 2 dt+∫_{x=0~π/2}log (sint) dt+∫_{x=0~π/2}log (cost) dt
=π/2*log 2+2I
∴ I=ーπ/2*log 2
となります。ご参考までに。

こんにちは。不定積分ではなく定積分でお答え
します。広義積分を習っていることを仮定しますが…
でも、
∫_{x=0~π/2}log (sinx) dx
についてだけです。
まず、上の積分が収束するかという問題があります。
(実際には、絶対収束します。)
この収束を示すことが必要なら補足しますので、
ここでは省きます。
(ヒントは(√x)log(sinx)に対してロピタルの定理を使い、x→+0とします。)

以上のことを頭の隅において積分を計算します。そこで、
I=∫_{x=0~π/2}log (sinx) dx
とおきます。...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qジョルダン標準形ってなんのため?

線形代数の本を読んでいると、後ろのほうにジョルダン標準形がでてきます。
書いてあることをなぞることはなんとかできるのですが、固有値の次にいきなり前触れもなく現れるので、これが
・どういう(歴史的)要請・経由で
・何のために
現れたのかがわかりません。

ジョルダン標準形の本質は何でしょうか?

Aベストアンサー

ジョルダンは線形代数の最終関門でこの証明を一度は理解していたほうがいいでしょう
証明は灯台出版から単行本が出ていて何種類か乗っています
私は単因子(あるいは行列子因子)による方法を一度は理解しましたが忘れました
でも必要があれば読み返せばすぐに思い出せるようにはなっています
定理は簡単なのですが重要です
制御理論で使います
ジョルダンの標準形は正則行列で対角化できない行列を準対角行列に分解するものです
x(t)を要素がtの関数の列ベクトルとし
Aを要素が定数の正方行列とし
v(t)を要素がtの関数の列ベクトルとし
x’(t)=A・x(t)+v(t)としたときに
正則行列PによってP^(-1)・A・Pが対角行列になるならば
x(t)を簡単に求めることができます
しかし正則行列PによってP^(-1)・A・Pが対角行列にならなくても
正則行列PによってP^(-1)・A・Pがジョルダンの標準形になれば
少し複雑になりますが簡単にx(t)を求めることができます
本質が何打という質問は何回で答えることができる人はいないのでは?

ジョルダンは線形代数の最終関門でこの証明を一度は理解していたほうがいいでしょう
証明は灯台出版から単行本が出ていて何種類か乗っています
私は単因子(あるいは行列子因子)による方法を一度は理解しましたが忘れました
でも必要があれば読み返せばすぐに思い出せるようにはなっています
定理は簡単なのですが重要です
制御理論で使います
ジョルダンの標準形は正則行列で対角化できない行列を準対角行列に分解するものです
x(t)を要素がtの関数の列ベクトルとし
Aを要素が定数の正方行列とし
...続きを読む

Q大学数学の勉強のしかた

大学で学ぶ数学の勉強の仕方に迷っています。

(1)高校までは、公式を覚える→問題演習 という流れで勉強をしていました。高校数学は、大学入試の問題が解けることがゴールだと思っていました。しかし、大学の数学は、何ができればゴールなのでしょうか?

(2)高校では、公式を覚え、問題を解いてました。大学の数学では定理、定義、命題、補題など、公式らしきものの量が多いですよね?全て覚えようとしたら相当な暗記量を強いられます。これらは全て暗記、または自力で導き出せるようにする必要があるのでしょうか?

(3)定理などは全て証明がついていますが、これらの証明を全て自力でできるようにならなければならないのでしょうか??

今、微積分、線形代数、集合論、ルベーグ積分などを勉強しています。今僕がやっている方法は、教科書の定理、定義などを暗記し、証明はわかるところだけ読んでいます。問題演習は、やったりやらなかったりです。
しかし、この方法だと、定理などの証明が理解できないことが多く、なかなか先に進みません…

以上が、勉強していく上での疑問です。どなたかアドバイスいただければ幸いです。

大学で学ぶ数学の勉強の仕方に迷っています。

(1)高校までは、公式を覚える→問題演習 という流れで勉強をしていました。高校数学は、大学入試の問題が解けることがゴールだと思っていました。しかし、大学の数学は、何ができればゴールなのでしょうか?

(2)高校では、公式を覚え、問題を解いてました。大学の数学では定理、定義、命題、補題など、公式らしきものの量が多いですよね?全て覚えようとしたら相当な暗記量を強いられます。これらは全て暗記、または自力で導き出せるようにする必要があるのでし...続きを読む

Aベストアンサー

大学での学び方に関する本は何冊も出版されていますから、図書館で探されてはいかがでしょう。
 本格的な数学の学び方に関する本であれば、

伊原 康隆 (著)志学数学―研究の諸段階・発表の工夫 シュプリンガー数学クラブ
http://www.amazon.co.jp/exec/obidos/ASIN/4431711406/

数学セミナー編集部 (編集)数学ガイダンスhyper
http://www.amazon.co.jp/exec/obidos/ASIN/4535784272/

ブックガイド <数学>を読む 岩波科学ライブラリー 113
http://www.amazon.co.jp/exec/obidos/ASIN/4000074539/

などは薄いし、大学図書館にも入っているでしょうし、一読する価値はあると思います。

 また、日本評論社の『数学セミナー』、サイエンス社の『数理科学』、現代数学社の『理系への数学』といった理系の大学生向けの数学雑誌が大学図書館に入っていないわけはないと思いますし、時期的に勉強の仕方を扱った記事も載っていると思いますから、少し時間を作って、バックナンバー含め眺められてはいかがでしょうか。

大学での学び方に関する本は何冊も出版されていますから、図書館で探されてはいかがでしょう。
 本格的な数学の学び方に関する本であれば、

伊原 康隆 (著)志学数学―研究の諸段階・発表の工夫 シュプリンガー数学クラブ
http://www.amazon.co.jp/exec/obidos/ASIN/4431711406/

数学セミナー編集部 (編集)数学ガイダンスhyper
http://www.amazon.co.jp/exec/obidos/ASIN/4535784272/

ブックガイド <数学>を読む 岩波科学ライブラリー 113
http://www.amazon.co.jp/exec/obidos/ASIN/4000074539/

...続きを読む

Q実数の整列化について

 大学で数学を学んでいる者です。最近、集合と位相の科目で、整列可能定理を学びました。それは、選択公理・Zornの補題と同値な命題であって、その内容は
「任意の集合において、適当な順序関係を定義すれば、整列集合にすることができる。(整列集合とは、空でない部分集合が常に最小元を持つ集合)」
という内容でした。
 さて、実数の集合は通常の順序関係では整列集合ではありません(例えば開区間は最小数を持ちません)。定理によれば、適当な順序によって実数の集合も整列集合になる訳です。
 それなら、それは具体的にはどのような順序なのかと調べて見たんですけど、どうも見つかりません。どなたか知っている人がいれば教えてください。

Aベストアンサー

連続濃度以上の集合に整列順序が存在することは、選択公理なしには証明できません(というより同値ですよね)。証明は抽象的構成を与えることですから、ある意味ではそれは不可能なわけです。といってしまうと身もふたもないですから、整列順序がどういうものかを納得するためにも雑な例をあげてみます。

整列順序というのは、ようするに最も小さい数があって、さらに各元に対して“次の数”が定まっているような順序です。たとえば自然数列{1,2,3,…}が典型です。実数に整列順序を入れてやりたければ、まず最小元を決めて、また各元に対して次の数を決めてやればいいのです。(しかしながら非可算個の元に対して次の元を指定するなんてことは人間には無理です(本当は可算無限個でも無理なんですけどね))

たとえば、{1,2,…,…,π,e,√2,√3,…,…,0,-1,-2,…}などという順序を考えてみましょう(左の方が小さいとする順序)。次の数さえ決まっていたらいいんです。だから上の順序は整列順序です。5の次は6だし、1兆3の次は1兆4です。πの次はeだし、eの次は√2です。0とか、πの一つ前の数字が気になったりしますが、整列順序というのはあくまでも一つ大きい数さえ決まっていたらいいんです。π^eがどこにあるかわかりませんが、それも適当に決めてやればいいのです。ようするに実数を思いついた順番にひたすら並べていけばいいのです(無限回!しかも非可算無限回!)それが整列順序というものです。

数学的帰納法ってあまり信頼がないですが、あれは自然数を一斉に順番に並べることができること(ペアノの公理)から由来する定理であって、整列可能定理というのはその非可算無限集合に拡張された超限帰納法に対応するものです。非可算無限個の元を順番に並べるという、とても有限の時間で人ができるわけがないことを考えているわけです。選択公理というのは、非空な集合の非可算無限直積から元が取れる、つまり非可算無限個の元をまったく同時に扱える、ということを主張する公理なので、そりゃあそんなこと認めてしまえば、整列順序なんて作れるよね、とそんな気がしてきませんか?(すべての実数に対してその次の数を考えてやるだけで整列順序ができるわけだから!)

ちなみに正65537角形の作図法なら知られています。(MathWorldから引用)De Temple (1991) notes that a geometric construction can be done using 1332 or fewer Carlyle circles. >ANo.1様

連続濃度以上の集合に整列順序が存在することは、選択公理なしには証明できません(というより同値ですよね)。証明は抽象的構成を与えることですから、ある意味ではそれは不可能なわけです。といってしまうと身もふたもないですから、整列順序がどういうものかを納得するためにも雑な例をあげてみます。

整列順序というのは、ようするに最も小さい数があって、さらに各元に対して“次の数”が定まっているような順序です。たとえば自然数列{1,2,3,…}が典型です。実数に整列順序を入れてやりたければ、まず最小元...続きを読む

Q空集合のべき集合

空集合のべき集合が空集合であることを証明したいのですが、
こういうあたりまえって思える証明はやっぱり背理法を用いるのでしょうか?

Aベストアンサー

空集合のべき集合は空集合ではなくて,
空集合を要素に持つような集合
{Φ}
を1つ持つのだと思いますが,違うのでしょうか?
一般にn個の要素を持つ集合の冪集合の要素の個数は2^nですが,
n=0のとき,すなわち空のときは,2^0=1で,1つの要素を持つとしてつじつまもあいますし.

Q「区分的に連続」と「区分的に滑らか」の概念について

フーリエ級数について勉強しているのですが、
「区分的に連続」と「区分的に滑らか」の理解が非常に曖昧です。

(1)
「区分的に連続」な関数の私のイメージは
周期の変わり目で不連続であってもいいけど、その不連続点の前後で発散していない関数、
なのですが、どこか不十分でしょうか?

(2)
「区分的に滑らか」な関数とは、
「その関数が区分的に連続、かつ1階導関数が区分的に連続」な関数とテキストでは説明されているため、
「区分的に滑らか」ならば「区分的に連続」である、と理解しているのですが、
これは正しいでしょうか?

よろしくお願いします。

Aベストアンサー

(1) 「区分的に連続」の定義に、文献ごとのブレはないのか?
が少々不安な気はします。私の知っている定義は、
http://next1.cc.it-hiroshima.ac.jp/MULTIMEDIA/linearalg02/node4.html
のようなモノです。

「その不連続点の前後で発散していない関数」とは、
リンク先の 条件2 のことを言わんとしているようです。
この流儀では、ただ有限個の除外点以外で連続なだけではない
のです。フーリエ級数を扱うときには、この意味での
「区分的に連続」な関数が登場しますね。


(2) 「区分的に滑らか」の方は、その説明ではマズイ
ような気もします。「滑らか」も、文脈ごとにブレのある用語ですが、
概ね「任意階微分可能であること」を指すようです。
複素関数なら、1階微分可能と任意階微分可能は同じことですが、
「区分的に滑らか」と言うときには、実関数を考えていることが
多いように思います。実関数の意味では、1階微分可能な関数が
任意階微分可能とは限りません。

ただし、フーリエ級数を扱うときには、
「区分的に連続、かつ1階導関数が区分的に連続」な関数が
登場するので、ソレを「区分的に滑らか」と呼んでしまうような
流儀があるのかも知れません。

どうなんでしょうね。

(1) 「区分的に連続」の定義に、文献ごとのブレはないのか?
が少々不安な気はします。私の知っている定義は、
http://next1.cc.it-hiroshima.ac.jp/MULTIMEDIA/linearalg02/node4.html
のようなモノです。

「その不連続点の前後で発散していない関数」とは、
リンク先の 条件2 のことを言わんとしているようです。
この流儀では、ただ有限個の除外点以外で連続なだけではない
のです。フーリエ級数を扱うときには、この意味での
「区分的に連続」な関数が登場しますね。


(2) 「区分的に滑らか」...続きを読む

Qべき乗

べき乗とは一体なんですか?
ウィキを見ても理解できませんでした。
2の2乗は2×2ですが、
2のマイナス2乗は一体どのような式なのですか?

Aベストアンサー

算数の延長線上だけの概念だけだといまいち理解出来ないですよね。
べき乗って要は指数なんですけど、
そういう難しい話を出来るだけ捨てて、算数の世界で説明出来る位まで掘り下げて説明します。

例えば 10の2乗は100、10の3乗は1000となります。
これを数字の動きに目を合わせてもう一度、書いてみます。
00010.00000 ←これを2乗すると↓
00100.00000 //10という値が左に1つずれた結果が答え

00010.00000 ←これを3乗すると↓
01000.00000 //10という値が左に2つずれた結果が答え

こういう風に表す事が出来ます。
じゃあ、10のマイナス2乗ってなった場合はどうなるのかというと、
00010.00000 ←これを-2乗する↓
00000.01000 //10という値が右に3つずれた結果が答え

という答えになります。
1を基準点として、右や左にいくつずれるか。
これがべき乗なのです。


で、2のべき乗を考えた時は、
全部2進数で考える必要があります。
00010.00000 ←2進数で表した数値の2
00100.00000 ←2乗した結果。数値で言うと4
00010.01000 //-2乗した結果。数値で言うと0.25


これで何となく分かっていただけたでしょうか?
ちなみに37のx乗を計算するみたいな時があったとしたら、
それは37進数で考えるという計算が必要になるのです。

算数の延長線上だけの概念だけだといまいち理解出来ないですよね。
べき乗って要は指数なんですけど、
そういう難しい話を出来るだけ捨てて、算数の世界で説明出来る位まで掘り下げて説明します。

例えば 10の2乗は100、10の3乗は1000となります。
これを数字の動きに目を合わせてもう一度、書いてみます。
00010.00000 ←これを2乗すると↓
00100.00000 //10という値が左に1つずれた結果が答え

00010.00000 ←これを3乗すると↓
01000.00000 //10という値が左に2つずれた結果が答え

こういう風...続きを読む


人気Q&Aランキング