はじめての親子ハイキングに挑戦!! >>

お世話になります。歯科の研修会講義の中で、現在使用している歯科材料のヤング率をすべて調査発表する事になりました。一つ一つメーカーに質問しているのですが、返事が有りません。材料に添付されています使用説明書には、ヤング率を載せているものが一つだけ有りました。が求め方が分かりません。一例を上げますと説明書には、耐力770MPa、伸び7%、硬さ305HVと有ります。これは歯科用金属で金12,0%、銀48,2%、パラジューム20,0%、銅17,7%、その他2,1%となっております。このような学問を全く勉強して来ていませんので、出来るだけ簡単にヤング率の求め方を教えてください。よろしくお願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

ヤング率とは何か、耐力、伸び、硬さとは


1の方がおっしゃっているとおり、提示されたデータからヤング率を求めるのは不可能です。

合金のヤング率はそもそも計測するもので計算するものではないという認識です。
一つ一つ。すでにご存知のことも多いかと思いますが、解説しますと、

HVとはビッカース硬さといい、表面硬度です。表面に規定のダイヤモンドをあてて圧力を掛け、どれだけ押し込めたかを変形部の面積で評価します。

耐力、伸びは、弾性限界を表し、これも試験機で計測します。
一定の大きさ形状の試験子に力を掛けていくと徐々に伸びが発生します。
力が一定以下の場合、力を掛けるのをやめると試験子は元の大きさに戻ります。これは弾性変形。
一定以上になると試験子は元の大きさに戻れなくなり(塑性変形)、更に掛けていくと千切れます。
このとき、塑性変形が始まると引っ張っている側に返ってくる応力が急に落ちますので、それで試験機は耐力と伸びを判断します。

そしてヤング率
ヤング率は弾性変形が起こっている際の、荷重と変化量の比例率です。
合金では元の金属の配合からでは求められないので試験して計測します。
ちょうどいい資料がありましたので貼り付けておきます。
www.iic-hq.co.jp/library/pdf/043_05.pdf

ヤング率のデータが欲しいなら供給者にテスト結果をもらうか、自分でテストするしかないと思います。
    • good
    • 0
この回答へのお礼

早速のご返答ありがとうございます。
教えて頂いた、資料を見てみましたが、理解できません。
メーカーに再度問い合わせてみます。
ありがとうございました。

お礼日時:2016/08/09 15:58

耐力(降伏点)と伸び(破断時)では、ヤング率は計算できませんね。

耐力以下の荷重時の伸びの値が必要です。
    • good
    • 0
この回答へのお礼

早速のご返答ありがとうございます。
使用説明書に書かれているデータでは計算できないとなると
メーカーに聞くのが得策ですね。
ありがとうございました。

お礼日時:2016/08/09 15:55

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q曲げ弾性率について

材料の通常の曲げ試験3点曲げと4点曲げ試験において求めた荷重-たわみ曲線を用いて計算される弾性率で3点曲げ試験では
E=L3F/4bh3Y
(Eは曲げ弾性率、Lは支点間距離、bは試験片の幅、hは試験片の高さFは荷重-たわみ曲線の始めの直線部分の任意に選んだ点の荷重、Yは荷重Fでのたわみ)
単位はMPa又はN/mm2で表すようですが、この式の導き方が、材料化学の本を読んでも見当たりません。
導き方が分かる方教えてください。

Aベストアンサー

単純梁の中央点に1個の集中荷重が作用したときの中央点のたわみの公式は,ご存知でしょうか? 多分,材料力学か構造力学の教科書に載っていると思います。

δ=(PL^3)/(48EI)  ・・・通常はこの式の表示です。
Y=(FL^3)/(48EI)  ・・・質問者さんの記号にあわせる。

この公式(2)に,長方形の断面2次モーメントの算定式
I=bh^3/12
を代入すると
Y=FL^3/(48E(bh^3/12))

E=の形になるように変形すると,
E=FL^3/(4bh^3Y)

となります。

QNをPaに単位換算できるのか?

大変困ってます。
皆さんのお力をお貸しください。

加重単位Nを圧力単位Paに変換できるのでしょうか?
もし出来るとしたらやり方を教えてください。
具体的には30Nは何Paかということです。
変換の過程も教えていただければ幸いです。

是非、ご回答、よろしくお願いいたします。

Aベストアンサー

 No.1さんがおおまかに答えておられますが、補足します。
 N(ニュートン)は力の単位です。対して、Pa(パスカル)は圧力の単位です。これらは次元が違うので、単独では変換はできません。
「30 Nは何Paか」
というのはナンセンスです。
 NとPaの関係は、
Pa = N/m^2
です。質問が、
「30 NをPaを使って表せ」
というのならば、
30 N = 30 Pa・m^2
となります。m^2(平方メートル)という単位が必要になります。物理量の間の関係、
圧力 = 力/面積
および、単位の間の関係
Pa = N/m^2
を整理して覚えてください。

Q強度と剛性の違いは?

単純な質問ですが、強度と剛性って意味合いが違うのか知りたいです。
広辞苑で調べても言葉の意味の違いが分かりません。
同じようなことで、「・・・思う」と「・・・考える」も意味合いが違うんですか?

日本人ですが、日本語難しいです。

Aベストアンサー

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり、「強度」には実にいろいろな種類がありますが、「剛性」とは多くは構造体がこれに加わる外力によって変形しないように、「いろいろな種類の強度を組み合わせて作り出した総合的な強度」といったらいいかと思います。もちろんニュアンスの問題ではありません。
 
 「剛性」とは変形しない強さ.....これは例えば、自動車のボディなどといった構造体に剛性を持たせるには、路面の凹凸などから車輪を通じて伝わってくる振動や強い衝撃、風圧、遠心力や慣性、衝突時の衝撃といった「外力」によって車体がつぶれたり伸びたり、あるいはれじれたり歪んだりしないように(これが剛性)、圧縮強度、引張強度、ねじれ強度、など種々の「強度」をそれぞれ高める必要があります。

 また材料には弾性(バネの性質や弾力)というものがありますが、「外力」によって材料が一時的にバネやゴムボールのように変形することで、構造体全体が一時的に変形しないようにする必要もあります。

 繰り返しますと、こうした「種々の強度」をそれぞれ高めることで「剛性」は高まります。

 しかし、種々ある「強度」の中でも「磨耗強度」だとか「耐環境性」といった「強度」は直接「剛性」には関係ありませんね。ここのところをご理解下さると、ただのニュアンスの違いだけでないことがお分かりいただけると思います。

 とても技術的な話でさぞ難しいことと思いますが、わたしも技術分野の方はともかく、それをご説明する「国語」方が危なっかしいので、その辺はお許し下さい。

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり...続きを読む

Q曲げ応力算出式の導き方

アスファルト舗装材の曲げ試験(舗装試験法便覧)において、
破断曲げ強度σ=3LP/2bh^2 破断ひずみε=6hd/L^2 L:支点間距離、P:荷重、b:供試体の幅、h:供試体の厚さ、d:たわみ と定義されています。
また、JIS K 7203 硬質プラスチックの曲げ試験方法においても、曲げ強さとして同じ式が定義されています。
どうしてこれらの式で定義できるのか、式の意味が分かりません。
また、これらの式をゴム系の材料に適用しても良いものでしょうか?
一応材料力学の本も読んでみましたがこれらの式を導く事が出来ませんでした。どなたか教えていただけませんでしょうか?宜しくお願いします。

Aベストアンサー

単純梁の中央に集中荷重(P)が作用したときの中央点の曲げモーメントは,
M=PL/4
長方形の断面係数は,
Z=bh^2/6
曲げ強度は,
σ=M/Z=(PL/4)/(bh^2/6)=3PL/2bh^2 ・・・(1)

中央点のたわみは,
d=PL^3/48EI
E=の形にして,
E=PL^3/48dI
ここで,Iは断面2次モーメントなので,
I=bh^3/12
を代入して
E=PL^3/48d(bh^3/12)=PL^3/4dbh^3 ・・・(2)

ここで,フックの法則よりひずみは,
ε=σ/E
なので,(1)と(2)を代入して,
ε=(3PL/2bh^2)/(PL^3/4dbh^3)=6hd/L^2

です。 

Qヤング率の単位について

MKS単位系では、N/m^2(ニュートン毎平方メートル)ですがこれをCGS単位系dyne/cm^2に変換したいんですが、1N/m^2=何dyne/cm^2になりますか?お教え願います。
できれば、簡単でいいので、途中式も示していただきたいです。

Aベストアンサー

1[N]=10^5[dyne]
1[m]=10^2[cm]⇒ 1[m^2]=10^4[cm^2]

です。よって、

1[N/m^2]=10^5/10^4[dyne/cm^2]
=10[dyne/cm^2]

となります。
 ヤング率の単位は[GPa]で表記されていることが多いので、[N/m^2]=[Pa]より

1[GPa]=10^10[dyne/cm^2]

と覚えておくと便利です。

Qヤング率について・・・

明日、卒研発表で困っています。
ヤング率が、「伸びと力の関係から求められる定数で、その物体の歪みにくさをあらわす」だということを調べたのですが、説明しずらいので、もうすこし分かりやすい言い方をご存知の方はお願いします。

Aベストアンサー

> ヤング率について・・・

---------------
【 答その1 】

簡単に言えば「材料のたわみ難さ」のことで、普通一般においては、
【 剛性 】と言う言葉で、表現されているものである。

---------------
【 答その2 】

「加えた力を、単位(面積)で割った値」を、「応力」とし、
「伸び量を、単位(長さ)で割った値」を、「歪率」とした時、
「応力」を「歪率」で割った値が、「ヤング率」と呼ばれる値である。

---------------
【 答その3 】

材料の弾性限度内において、
「単位(面積)当たりに加えた力」を、その時点での、
「単位(長さ)当たりの伸び量」で割った値を、「ヤング率」と呼ぶ。

---------------
「 ヤング率 」
http://ja.wikipedia.org/wiki/%E3%83%A4%E3%83%B3%E3%82%B0%E7%8E%87
「 剛性と強さ 」
http://okweb.jp/kotaeru.php3?q=65704

> ヤング率について・・・

---------------
【 答その1 】

簡単に言えば「材料のたわみ難さ」のことで、普通一般においては、
【 剛性 】と言う言葉で、表現されているものである。

---------------
【 答その2 】

「加えた力を、単位(面積)で割った値」を、「応力」とし、
「伸び量を、単位(長さ)で割った値」を、「歪率」とした時、
「応力」を「歪率」で割った値が、「ヤング率」と呼ばれる値である。

---------------
【 答その3 】

材料の弾性限度内において、
「単位(面...続きを読む

QTD、MDって何の略?

フィルム関係の仕事をしていてたまに目にする、
流れ方向MDと垂直方向TDって何の略なのでしょうか?

Aベストアンサー

流れ方向 ( MD : Machine Direction )
垂直方向 ( TD : Transverse Direction )

Q断面2次モーメントと断面係数の違い

断面2次モーメントと断面係数の違いなんですが

断面2次モーメントとは、部材の変形のしにくさを表して、断面2次モーメントが大きいと、たわみにくく座屈しにくいことを示す。
それに対して断面係数は、部材の曲げ強さを表し、断面係数が大きいと曲げに対して強いことを示す。

なんですが、思うにたわみにくさと曲げ強さはイコールではないのですか?

断面2次モーメントが大きいと曲げに対しても強い。
断面係数が大きくてもたわみににくい。

とはかならずしもならないのでしょうか?
いまいち区別してる意味がよくわかりません
ご教授くださいませんか

Aベストアンサー

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超えた時に破壊する。

この時,(A)部分の負担する力(T)が同じならば,(A)の面積(=)が大きい程破壊しにくい。又,中心点からの距離(J)が大きいと破壊しにくい。簡単に言ってしまえば,この時の(A)の面積と距離(J)を掛けたものが,曲げ外力に抵抗する抵抗曲げ強度を決めるための係数,即ち,断面係数(Z)です。

つまり,曲げ強度に影響を与える断面係数は,材料の材質,強度,変形などに関係なく,形状と距離だけで決まります。

一方,(A)部分に作用した引張力(T)は,(A)部分を伸ばす,即ち,変形させます。この時の変形量は,フックの法則によって,形状,距離に加えてヤング係数によって決まります。
この時,変形量は断面の外縁が最も大きく,中心位置に近いほど小さくなります。この時の形状の変化率を表すのが断面2次モーメントです。
(A)部分が引張によって伸び,(B)部分が圧縮による縮んだ結果,この材料はδ方向に変形します。この変形量がたわみです。

つまり,断面係数と断面2次モーメントは,公式は似ていますが,断面係数は曲げ抵抗強度に関する量であり,断面2次モーメントは変形率に関する量であって,お互いに全く関連性のない形状に関する係数です。

// たわむ=まがる
は,変形に関するもので,強度とは関係有りませんので,断面2次モーメントにだけ関係する語句です。(たくさん曲がっても=たわみが大きくても,破壊するとは限らない。)

これを踏まえて,

// たとえば
// I>Zの場合だと割り箸のようにたわみにくいけど折れやすく
// I<Zの場合だと釣竿のようにたわみやすいけど折れにくい
// とかだとイメージできるんですが

というのは,上記の断面係数と断面2次モーメントの理屈から言うと,正解とは言えませんが,結果的に,強度とたわみの関係を言い表している,とっても素敵な例として有効だと思います。(今後,私にも使わせてください。)

この例の(I)を,曲げ剛性(EI)と言い換えれば,強度と変形の関係を表す例として完璧かもしれません。つまり,変形=たわみの話をする時,(I)が単独で使われることはなく,常に一組の概念として,曲げ剛性(K=EI)として使われる,と言うことです。

これらの断面に関する諸量は,構造力学や材料力学において,数学的に積分を用いて説明され,イメージとして説明されることはほとんど有りません。ですから,実際に計算する事は出来ても,どのようなイメージかと聞かれると答えに窮して仕舞うのも仕方ない事だと思います。私もその一人ですが・・・

どちらにしても,断面係数と断面2次モーメントの関連性について,1級建築士でもイメージする事が難しい概念ですから,イメージ化して素人に説明するのは,多少無理があると思います。

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超え...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング