4月17日はQueenの日!フレディ・マーキュリーの年代別ファッション&ヒットソングまとめ

こんばんは。よろしくお願いします。主量子数がn=3以上になるとs,p,d・・・と順番に入るのではなく、少し順番が変わり、教科書には「周期表の第1族と第2族はs軌道に電子が入る元素、第13族から18族まではp軌道にはいる元素、第3族から12族まではd軌道に電子が入る」とありました。ですが、遷移元素の場合、価電子が1個か2個なのでその教科書の記述とも合いません。遷移元素の電子配置はどう書けばいいのでしょうか?どなたか教えてください。

A 回答 (3件)

こんばんは。


電子配置はエネルギー準位に依存しています。まず、軌道のエネルギー準位は原子番号に依存して変化します。電子は1つの軌道に2つ配置し、電子はエネルギーの低い軌道から順に配置します。これを考えると、まず、1s、2s、2p、3s、3pと電子は入ります。このままいくと次は3dに配置するように見えますが、3dには入らず4sにはいります。これは4sが3dよりもエネルギー準位がひくい、つまり安定だからです。したがって、原子番号19、20は3d軌道が空になります。4s軌道に電子がうまると次は3d軌道に電子が配置されます。ここで注意するのは原子番号24と29は4s軌道から1電子3d軌道に移動します。この方が安定になるからです。(3d軌道が半閉殻、閉殻します。)つまり4s軌道には電子が1つまたは2つだけになります。だから価電子は1または2になります。
例 Sc (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (3d)1 (4s)2
   電子の入り方は1s→2s→2p→3s→3p→4s→3d
    • good
    • 2
この回答へのお礼

ありがとうございます!では3pの次は4sと電子を詰めていけばよいのでしょうか?あと原子番号24と29は4s軌道から1電子移動して半閉殻になったほうが安定するのはなぜでしょう??私には電子がどっちかに詰められちゃったほうが(?うまく言えません。ごめんなさい)安定する感じがしてしまうのですが・・・。再度質問ごめんなさい!

お礼日時:2004/07/25 00:41

そうですよ♪3pの次は4sに電子を配置します。


追加質問のなぜ半閉殻が安定化についてです。
閉殻は3d軌道に電子が完全に満たされた状態で安定です。半閉殻は3d軌道に1個ずつ電子が収容された状態で比較的安定です。3d軌道は、磁気量子数m=0、±1、±2、の5つがあります。ですから、5個の電子が配置した半閉殻が比較的安定といえます。
うまく答えられていなくてごめんなさい。
    • good
    • 1
この回答へのお礼

ありがとうございました!!ごめんなさい☆何度も。とっても助かりました。本当にありがとうございました!

お礼日時:2004/07/26 19:51

高校生の方ですね。



>遷移元素の場合、価電子が1個か2個なので

これは大間違いですよ。まずはこれが大間違いであることを確認してください。
    • good
    • 1
この回答へのお礼

ありがとうございました。

お礼日時:2004/07/26 19:52

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電子配置について

Ni2+(ニッケルイオン)の電子配置と不対電子を示せという問題で僕は、[Ar]3d64s2と考えたのですが・・・答えは[Ar]3d8となっています。電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?よくわからないので教えてください。

Aベストアンサー

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が抜けるときには、4s軌道から先に抜ける。
と覚えるのもいいです。

■Ni2+の場合
はじめの考え方に従うと、ニッケルは10族、イオンの価数は2なので、
 3d電子の数=10-2=8
となって、電子配置は[Ar]3d8になります。
 二番目の考え方では、中性のニッケル原子の電子配置[Ar]3d84s2から、電子を2個抜いたのが2価ニッケルイオンなので、4s軌道から電子を2個抜くと、イオンの電子配置は[Ar]3d8になります(Ni3+ならNi2+の電子配置からさらに1個電子を抜いて、[Ar]3d7になります)。

■考え方が破綻する例
Ca+,Sc+,Ti+,V+,Mn+,Fe+,Co+,Ni+,Zn+では、これらの二つの考え方から導かれる答えは一致しません。例えば、考え方その1ではNi+の電子配置は[Ar]3d9になりますが、考え方その2ではNi+の電子配置は[Ar]3d84s1になります。しかしこれらの1価の陽イオンは、きわめて特殊な条件下でしか生成しませんので、通常これらの電子配置が問題になることはありません。
 第4周期の1族~12族の1価金属イオンで重要なものは、K+とCu+です。この二つのイオンに関しては、考え方その1でも考え方その2でも、正しい電子配置を与えます。

■なぜ中性原子とイオンで電子の詰め方が変わるのか?
カリウム(原子番号19)とカルシウム(原子番号20)では、4s軌道の方が3d軌道よりもエネルギーが低いのですけど、じつは、原子番号が20より大きい原子では、エネルギーの順序が逆転して、4s軌道よりも3d軌道の方がエネルギーが低くなります。
 ですので、「エネルギーが低い軌道から電子を詰めていく」というルールに従えば、Sc,Ti,V,Cr,Mn,...では、4s軌道よりも先に3d軌道に電子を詰めていくことになるのですけど、こうやって作った電子配置は、中性原子(と多くの一価イオン)では、正しい電子配置にはなりません。つまり、原子番号が20より大きい中性原子では、「エネルギーが低い軌道から電子を詰めていく」というルールだけでは、正しい電子配置を予測することができません。
 この困難を乗り越えるためには、本当ならば、「電子と電子の間に働くクーロン反発力」を考えに入れなければならないのですけど、これが結構めんどうな話になります。そこで、めんどうな話を避けるために、少し反則気味なのですけど、「エネルギーが低い軌道から電子を詰めていく」というルールだけを使って正しい電子配置を予測できるように、『原子番号が20より大きい原子でも、4s軌道の方が3d軌道よりもエネルギーが低い』ということにしておいて、4s軌道が満たされてから3d軌道に電子が入る、という説明がなされます。
 陽イオンでは、中性原子に比べて電子が少なくなっていますので、電子と電子の間に働くクーロン反発力は、中性原子のそれと比べて小さくなります。そのため、クーロン反発の話を無視しても、正しい電子配置を得ることができます(一価の陽イオンは除く)。本来、4s軌道よりも3d軌道の方がエネルギーが低いのですから、3d軌道が満たされてから4s軌道に電子が入る、ということになります。

■まとめ
中性原子では、4s軌道の方が3d軌道よりもエネルギーが低いので、4s軌道が満たされてから3d軌道に電子が入る。
陽イオンでは、4s軌道よりも3d軌道の方がエネルギーが低いので、3d軌道が満たされてから4s軌道に電子が入る。
中性原子と陽イオンで軌道の順序が変わるのは、電子と電子の間に働くクーロン反発力が陽イオンでは小さくなるからである。

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が...続きを読む

QCrの電子配置がなぜ3d軌道に5個、4s軌道に1個になるのですか?

電子配置のことなんですが、遷移元素の原子番号24番のCrの電子配置がなぜ3d軌道に5個、4s軌道に1個はいるのかわからないんです。前の23番の元素Vは3d軌道に3個、4s軌道に2個はいってるので、次のCrはこれでいくと3d軌道に4個、4s軌道に2個になるはずじゃないんでしょうか?これと同じことが、NiとCuでも起こっているのですがなぜなんでしょうか?

Aベストアンサー

定性的な説明ですが、3d軌道に電子が半分充足された状態(Cr)や完全に充足された状態(Cu)がエネルギー的に特別、安定になるからです。4f軌道についても同様です。

Q元素と原子の違いを教えてください

元素と原子の違いをわかりやすく教えてください。
よろしくお願いします。

Aベストアンサー

難しい話は、抜きにして説明します。“原子”とは、構造上の説明に使われ、例えば原子番号、性質、原子質量などを説明する際に使われます。それに対して“元素”というのは、説明した“原子”が単純で明確にどう表記出来るのか??とした時に、考えるのです。ですから、“元素”というのは、単に名前と記号なのです。もう一つ+αで説明すると、“分子”とは、“原子”が結合したもので、これには、化学的な性質を伴います。ですから、分子は、何から出来ている??と問うた時に、“原子”から出来ていると説明出来るのです。長くなりましたが、化学的or物理的な性質が絡むものを“原子”、“分子”とし、“元素”とは、単純に記号や名前で表記する際に使われます。

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Qσ結合、π結合、sp3混成???

こんにちわ。今、有機化学の勉強をしているのですが、よくわからないことがでてきてしまったので質問させていただきます。なお、この分野には疎いものなので、初歩的なことかもしれませんがよろしくおねがいします。

題名の通りで、σ結合、π結合、混成軌道とはどういう意味なのですか??手元にある資料を読んだのですが、全くわからなかったので、どなたかお教えいただければ幸いです

Aベストアンサー

σはsに対応しています。sとsの結合でなくともsとp他の結合でも良いのですが、対称性で、「結合に関与する(原子)軌道が(分子軌道でも良い)結合軸に関して回転対称である」つまり結合軸の周りにどの様な角度回しても変化のない結合です。
πはpから来たもので、結合が「結合に関与する軌道(同上)が結合を含む面内に『一つ』の節を持ち結合軸上に電子密度のないもの」を指します。当然sは使えませんpかdかから作ります。
混成軌道:例えばs1p3の軌道があったときこれらからsp+2×p、sp2+p、sp3のいずれの組み合わせを(数学的に)作っても、どれもが四つの「直交した」軌道になります。
この様に「典型的な」表現から他の数学的に等価な(直交した)はじめの軌道数と同数の軌道を作り出したものです。
もっぱら化学結合の立体特異性を説明するのに使われます。
ライナス・ポーリング先生達が考え出したもののようです。

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

QN原子のsp3混成軌道について教えてください.

とある教科書で
N原子の基底状態
1s (↑↓)
2s (↑↓)
2p (↑↑↑)
となっており,sp3混成軌道をとる場合については
1s (↑↓)
sp3 (↑↑↑↑)
というような表記がされていました.

率直に・・・これは正しいのでしょうか??
正しいのであれば,sp3混成軌道をとる場合,電子が一つ足りないのはなぜなのか.
また,間違っている場合は,電子の正しい軌道配置?を教えて頂ければと思います.

色々自分で調べては見たのですが,ほとんどの説明はカーボン原子で説明されているため,N原子についてはほとんど見あたりませんでした・・・.

御存知の方おられましたら,書き込みよろしくお願いします!!

Aベストアンサー

間違ってます。

1s  (↑↓)
sp3 (↑↓、↑、↑、↑)

が正しい電子配置です。
四つの等価なsp3軌道のうち一つにはスピンが逆向きになるよう二つの電子が
収容され、残り三つに一つずつ電子が入ります。

電子が二つはいった軌道は非共有電子対に相当し
一つだけ入った軌道は不対電子に相当します。

Q二酸化硫黄 SO2 の構造について

SO2 は配位結合が関係している、と聞いたのですが、どのような構造
になりますか?SO2は配位結合が関係していて、折れ線形で、極性分子だと聞きました。どういうことか、さっぱりわかりません。
すみませんが、詳しく教えてください。

Aベストアンサー

SO2 の電子式は以下のようになります(MSゴシックなどの等幅フォントで見てください)。

 ‥  ‥  ‥
:O::S::O:   電子式(a)

 ‥  ‥ ‥
:O::S:O:    電子式(b)
      ‥

価標を使って結合を表すと、構造式はそれぞれ

 ‥ ‥ ‥
:O=S=O:   電子式(a)に対応する構造式

 ‥ ‥ ‥
:O=S→O:   電子式(b)に対応する構造式
     ‥

のようになります。

構造式で書くと明らかなように、電子式(a)では、SとOの間の結合は両方とも二重結合になっていて、配位結合はありません。それに対して、電子式(b)では、片方のSO結合は二重結合ですが、他方の結合が配位結合になっています。

電子式(a)と電子式(b)のどちらが正しいのか?については、少し難しい話になるのですけど、#1さんのリンク先にあるウィキペディアの解説によると、
・二酸化硫黄 SO2 の電子式は配位結合を使わないで電子式(a)のように書くのがよい
・オゾン O3 の構造式は配位結合を使ってO=O→Oのように書くのがよい
ということになります。

「電子対反発則」を使うと、SO2分子が折れ線形になることを、SO2の電子式から説明できます。電子対反発則についての簡単な説明は、ネット検索ですぐに見つかると思います。電子対反発則にそれほど精通しなくても、
・H2Oの電子式から、H2O分子が折れ線形になることを説明できる
・CO2の電子式から、CO2分子が直線形になることを説明できる
ようになれば、SO2分子が折れ線形になることを、電子対反発則から説明できるようになります。

SO2が極性分子になることは、「二酸化炭素 CO2 が極性分子に“ならない”こと」が理解できれば、これらの分子の形から簡単に分かると思います。

SO2 の電子式は以下のようになります(MSゴシックなどの等幅フォントで見てください)。

 ‥  ‥  ‥
:O::S::O:   電子式(a)

 ‥  ‥ ‥
:O::S:O:    電子式(b)
      ‥

価標を使って結合を表すと、構造式はそれぞれ

 ‥ ‥ ‥
:O=S=O:   電子式(a)に対応する構造式

 ‥ ‥ ‥
:O=S→O:   電子式(b)に対応する構造式
     ‥

のようになります。

構造式で書くと明らかなように、電子式(a)では、SとOの間の結合は両方とも...続きを読む

Q原核生物と真核生物の違い

原核生物と、真核生物の違いについて教えてください(><)
また、ウイルスはどちらかも教えていただけると嬉しいです!

Aベストアンサー

【原核生物】
核膜が無い(構造的に区別出来る核を持たない)細胞(これを原核細胞という)から成る生物で、細菌類や藍藻類がこれに属する。

【真核生物】
核膜で囲まれた明確な核を持つ細胞(これを真核細胞という)から成り、細胞分裂の時に染色体構造を生じる生物。細菌類・藍藻類以外の全ての生物。

【ウイルス】
濾過性病原体の総称。独自のDNA又はRNAを持っているが、普通ウイルスは細胞内だけで増殖可能であり、ウイルス単独では増殖出来ない。



要は、核膜が有れば真核生物、無ければ原核生物という事になります。

ウイルスはそもそも細胞でなく、従って生物でもありませんので、原核生物・真核生物の何れにも属しません(一部の学者は生物だと主張しているそうですが、細胞説の定義に反する存在なので、まだまだ議論の余地は有る様です)。



こんなんで良かったでしょうか?

Q鉄イオンになぜFe2+とFe3+があるの?

イオンに価数の違うものがあるという現象が理解できません・・・。

例えば、水素イオンだったらH+しかありませんよね。電子を一つ外に出した方が安定だから。

でも、鉄イオンにFe2+とFe3+があるじゃないですか!!

じゃあ、このイオンたちは外に電子を二つだしても、三つだしても安定なのでしょうか。変です。安定状態は一つじゃないんですか。あの最外核電子が希ガスと同じになると安定。

仮に安定状態にかかわらずイオンになれるんだとすれば、Fe+~Fe10+とかいくらでもありそうな気がするのです。でも、鉄の場合はFe2+とFe3+くらいしか聞かないですし、水素の場合のH2+も聞きません。どうしてでしょう(-_-;

Aベストアンサー

イオン化エネルギー(単位はkJ/mol)

H  1312

Na 495  4562  6911
Mg 737  1476  7732

K  419  3051  4410
Ca 589  1145  4910

He  2373  5259
Ne  2080  3952
Ar  1520  2665 

1.不活性元素(希ガス)の電子配置から先に行くのは難しいのが分かります。
  Na^2+は存在しないだろうというのはエネルギー的な判断として可能です。

2.Ca^2+を実現するために必要なエネルギーはNa^+を実現するために必要なエネルギーよりも2倍以上大きいです。でもCa^2+は安定に存在します。これはイオン化エネルギーの大きさだけでは判断できない事です。
CaOとNaClは結晶構造が同じです。融点を比べると結合の強さの違いが分かります。
NaCl 801℃   CaO  2572℃

CaOの方が格段に結合が強いことが分かります。
結合が強いというのを安定な構造ができていると考えてもいいはずです。
NaClは(+)、(-)の間の引力です。CaOは(2+)、(2-)の間の引力です。これで4倍の違いが出てきます。イオン間距離も問題になります。Ca^+には最外殻のs軌道に電子が1つ残っていますからCa^2+よりも大きいです。荷電数が大きくてサイズの小さいイオンができる方が静電エネルギーでの安定化には有利なのです。
Fe(OH)2よりもFe(OH)3の方が溶解度が格段に小さいというのも2+、3+という電荷の大きさの違いが効いてきています。サイズも小さくなっています。

イオンは単独では存在しません。必ず対のイオンと共に存在しています。
水和されていると書いておられる回答もありますが対のイオンの存在によって安定化されるというのが先です。
水溶液の中であっても正イオンだけとか負イオンだけとかでは存在できません。水和された正イオンと水和された陰イオンとが同数あります。水和された負イオンの周りは水和された正イオンが取り囲んでいます。液体の中にありますからかなり乱れた構造になっていますが正負のイオンが同数あって互いに反対符号のイオンの周りに分布しているという特徴は維持されています。

3.d軌道に電子が不完全に入っている元素を遷移元素と呼んでいます。
  「遷移」というのは性質がダラダラと変わるということから来た言葉です。普通は族番号が変われば性質が大きく変わります。周期表で横にある元素とは性質が異なるが縦に並んでいる元素とは性質が似ているというのが元素を「周期表の形にまとめてみよう」という考えの出発点でした。だから3属から11族を1つにまとめて考えるという事も出てくるのです。
 性質が似ているというのは電子の配置に理由があるはずです。電子は最外殻のsに先に入って後からdに入ります。エネルギーの逆転が起こっていますが違いは小さいものです。まず外の枠組み(s軌道)が決まっている、違いは内部(d軌道)の電子の入り方だけだというところからダラダラ性質が変わるというのが出てきます。M^2+のイオンがすべて存在するというのもここから出てきます。11族の元素に1+が出てくるのは内部のd軌道を満杯にしてs軌道電子が1つになるというからのことでしょう。これは#7に書かれています。でもそれがなぜ言えるのかはさらに別の理由が必要でしょう。
 s軌道の電子が飛び出してイオンができたとすると残るのはd軌道の電子です。イオンのサイズがあまり変わらないというのはここから出てきます。
 イオンの価数の種類が1つではないというのも遷移元素の特徴です。エネルギーにあまり大きな違いのないところでの電子の出入りだという捉え方でもかまわないと思います。イオン単独で考えているのではなくてイオンが置かれている環境の中で考えています。イオン化エネルギーの大小だけではありません。
 色が付いている化合物が多いというのもエネルギー的にあまり大きな違いのない電子配置がいくつか存在する、そのエネルギー状態は周囲の環境によって割合と簡単に変化するという事を表しています。普通なら電子遷移は紫外線の領域です。可視光の領域に吸収が出るのですから差の小さいエネルギー準位があるという事です。この色が周りに何があるかによって変化するというのも、変動しやすいエネルギー順位があるという証拠になるのではないでしょうか。酸化銅、硫酸銅、塩化銅、硝酸銅、結晶の色は異なります。水和された銅イオン、アンモニアが配意した銅イオンもはっきりとした色の違いがあります。

4.今考えているイオンの電荷は実電荷です。酸化数は実電荷に対応しているとは限りません。
 単原子イオンの酸化数はイオンの価数そのままですが、単原子イオンではない、分子中の原子、または多原子イオンの中の原子の酸化数は形式的に電荷を割り振ったものです。イオンでないものであってもイオンであるかのように見なしているのです。「Cr^(6+)」が存在するなんて書かれると「????」となってしまいます。Cr2O3の融点が2436℃、CrO3の融点が196℃であるという数字から考えるとCrO3はイオン性ではありません。無水クロム酸とも言われていますがCrO4^2-の中の結合と同じであろうと考えられます。
 CO2はC^(4+)1つとO^(2-)2つが結合したものと教えている中学校があるように聞いていますが困ったことです。「硫酸の中の硫黄の原子価は6+である」と書いてある危険物のテキストもあります。酸化数と原子価の混同はかなり広く見られることのようです。Cr^6+ という表現はそれと同列のことですから堂々と回答に書かれては困ることです。

イオン化エネルギー(単位はkJ/mol)

H  1312

Na 495  4562  6911
Mg 737  1476  7732

K  419  3051  4410
Ca 589  1145  4910

He  2373  5259
Ne  2080  3952
Ar  1520  2665 

1.不活性元素(希ガス)の電子配置から先に行くのは難しいのが分かります。
  Na^2+は存在しないだろうというのはエネルギー的な判断として可能です。

2.Ca^2+を実現するために必要...続きを読む


人気Q&Aランキング

価格.com 格安SIM 料金比較