数学Iの問題です。
x,yを実数とするとき、x^2+4xy+5y^2-6yが最小値sをとるときのx,yの値を求めよ。また、最小値sも求めよ。

青チャートの類題を見ながらやってみたんですが、何度やっても解けません、、、

解説をお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

z=x^2+4xy+5y^2-6y=x^2+4xy+4y^2+y^2-6y=(x+2y)^2+(y-3)^2-9と変形できる。


これと、(x+2y)^2+(y-3)^2≧0より、z≧-9
したがって、z=-9となるようにx、yをもとめる。
z=-9を最初の式に入れると(x+2y)^2+(y-3)^2=0よりx+2y=0、y-3=0
ゆえに、x=-6、y=3のとき最小値s=-9 です。
    • good
    • 1
この回答へのお礼

非常にわかりやすい解答をありがとうございます。
因数分解のところで行き詰まっていました、、

お礼日時:2017/01/19 18:45

その「何度やっても解けません」で


・何をどう考えて
・どこで困っているのか
を書くつもりはありませんか?
    • good
    • 1
この回答へのお礼

ご指摘ありがとうございます。そう書くべきでした。次からはそのようにしようと思います。

回答ありがとうございます。

お礼日時:2017/01/19 18:47

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Qx, y∈R がx^2+xy+y^2=6をみたしながら動くときz=x+yの取り得る値の範囲を求めよ。

x∈R より、判別式Dは実数解を持つ(D≧0)を利用しました。
y=z-xをx^2+xy+y^2=6に代入
x^2+x(z-x)+(z-x)^2-6=0
x^2-zx+z^2-6=0
題意より
D=z^2-4(z^2-6)≧0
3z^2-24≦0
z^2≦8
∴ -2√2≦z≦2√2

と解いたのですが、説明不足でしょうか?
不自然な点、補足した方がよい点がをご教授下さい。

Aベストアンサー

試験対策を考えているなら、少し答案の書き方を考えたほうが良いかもしれません。
答案は、基本的に「文章を」書くものです。数式は、その補助に過ぎませんから、
式だけ書きっぱなし(に近い)答案は、求める値だけ当たっていても、評価が低い場合があります。

上の答案は、「題意より」の部分を補って

x^2+xy+y^2=6 に y=z-x を代入すると、x^2-zx+z^2-6=0 となる。
題意より、この方程式は x の実数解を持たねばならないから、
判別式を考えると、z^2-4(z^2-6)≧0 が成り立つ。
この不等式を解けば、-2√2≦z≦2√2 となる。

と解釈される可能性があります。(文章になっていないので、読まずに0点という可能性さえある。)

こう書き直してみると、
-2√2≦z≦2√2 は、実数 x が存在するための必要条件に過ぎないこと、
実数 y が存在するかどうかに関して何も言っていないこと、
の二点について、十分性の怪しい記述になっています。

判別式≧0 であれば実数解 x が存在し、y=z-x によって y も実数である
ことを一言書いておくほうが好いでしょう。
そんなこと言うまでもない、と思ったとしても。

試験対策を考えているなら、少し答案の書き方を考えたほうが良いかもしれません。
答案は、基本的に「文章を」書くものです。数式は、その補助に過ぎませんから、
式だけ書きっぱなし(に近い)答案は、求める値だけ当たっていても、評価が低い場合があります。

上の答案は、「題意より」の部分を補って

x^2+xy+y^2=6 に y=z-x を代入すると、x^2-zx+z^2-6=0 となる。
題意より、この方程式は x の実数解を持たねばならないから、
判別式を考えると、z^2-4(z^2-6)≧0 が成り立つ。
この不等式を解けば、-2...続きを読む

Q「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小

「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、

 解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、
    =…={x-(y+2)}^2+y^2-2y+4 
  
  これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。

  ここで、g(y)=y^2-2y+4 とおくと、
     
    (省略)

と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、
y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通りのどれでしょうか?

 (1)y^2+Z+4 → y^2+Z+4 , (2)y^2+Z+4=y^2+(Z+4) より、z+4 ,
 (3)y^2+Z+4=y^2+(Z+4) より、z+4は1次関数なので、最小値はもたない

また、y^2+z^2+4となるtの式が有った場合、tの最小値は、
 y^2+z^2+4 → y^2+z^2+4=y^2+(z^2+4) より、4 

で合っているでしょうか?

「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、

 解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、
    =…={x-(y+2)}^2+y^2-2y+4 
  
  これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。

  ここで、g(y)=y^2-2y+4 とおくと、
     
    (省略)

と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、
y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通り...続きを読む

Aベストアンサー

>このtの式の最小値が、y^2+Z+4となるtの式が有った場合

意味不明です。「tの式」を定義してください。

Q「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

こんにちは。識者の皆様、宜しくお願い致します。

[問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。
[問2]x+y=1を満たす全てのx,yに対して
ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。

[1の解]
(5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので
p=10-kの時(k=10-pの時)
p+1=10-kの時(k=9-pの時)より
a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p)
で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から
23p^3-199p+218=0
となったのですがこれを解いてもp=6(予想される解)が出ません。
やり方が違うのでしょうか?

[2の解]
与式をx+yという対称式で表せばならないと思います(多分)。
どうすれば対称式で表せるのでしょうか?

Aベストアンサー

 (1)Cをばらして比を簡略化するところで計算間違いがありそうな気がします。その経過をもう少し詳しく書いてもらえませんか?
 (2)a,b,cを求めるにはまず、x+y=1 を満たすすべての(x,y)で成り立つのですから、x+y=1を満たす(x,y)をまず代入してみてはどうでしょうか。候補としては、(1,0)(0,1)(2,-1)など。
 それから計算されたa,b,c でx+y=1を満たすすべてのx,yで成り立つかどうかを確認するという手順でどうでしょうか?

Qx^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値

x^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値を求める問題です…
解説お願いします(T-T)

Aベストアンサー

1) x-2y=k とおき、x^2+2xy+4y^2=9 に代入して、xまたはyを消去します。
  ここでは 2y=x-k として xを消去します。
   x^2+x(x-k)+(x-k)^2=9
  ⇔3x^2-3kx+k^2-9=0  ・・・・★

2) 「x^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値を求める問題」は
  「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つときのkの最大値・最小値を求める問題」
と同じです。
  ですので、1)で得たxの2次方程式が実数解をもつことが「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つこと」と同値です。
  従って、2次方程式★の判別式から
   9k^2-12(k^2-9)≧0
  ⇔k^2≦36
  ∴-6≦k≦6
となります。
 ここから 最大値 6、最小値-6を得ます。

3) 最大・最小となるx、yの値を求めます。
  k=±6 のとき 式★の2次方程式は (x干3)^2=0 となりますので、その解は x=±3 となります。(複号同順)
 また、yの値は k=±6, x=±3 のとき y=(x-k)/2=±(3-6)/2=干3/2 となります。(複号同順)

 従って、最大値は(x,y)=(3,-3/2)のとき 6 で、最小値は(x,y)=(-3,3/2)のとき -6 となります。

1) x-2y=k とおき、x^2+2xy+4y^2=9 に代入して、xまたはyを消去します。
  ここでは 2y=x-k として xを消去します。
   x^2+x(x-k)+(x-k)^2=9
  ⇔3x^2-3kx+k^2-9=0  ・・・・★

2) 「x^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値を求める問題」は
  「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つときのkの最大値・最小値を求める問題」
と同じです。
  ですので、1)で得たxの2次方程式が実数解をもつことが「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つこと」と同値です。...続きを読む

Qx,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xy

x,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xyの最大値を求めよ


解き方を教えてください
よろしくお願いします

Aベストアンサー

x=cost/√2    (1)
y=sint/√3    (2)

とおくとx,yが2x^2+3y^2=1を満たす。
0≦t<2π     (3)

(1),(2)を
z=x^2-y^2+xy
へ代入,
倍角公式をつかって整理すると
z=5cos2t/12+√6sin2t/12+1/12
単振動の合成によって

z=√31sin(2t+a)/12+1/12 (4)

ここにsina=3/√31, cosa=√6/√31
aは0<a<π/4なる角度である。

(4)はsin(2t+a)=1のとき最大値(1+√31)/12をとる。
この時2t+a=π/2即ち
   t=π/4-a/2
このtは(3)の中に入っている。

(4)はsin(2t+a)=-1のとき最小値(1-√31)/12をとる。
この時2t+a=π3/2即ち
   t=π3/4-a/2
このtは(3)の中に入っている。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報