人気マンガがだれでも無料♪電子コミック読み放題!!

次の数を大小順に並べろ
(1)2^36,3^24,6^12
(2)3の4乗根、5の6乗根、7の7乗根
(3)log3の2、log7の4、2/3
途中式をわかりやすく教えていただけると嬉しいです

このQ&Aに関連する最新のQ&A

A 回答 (2件)

(1) 同じべき乗の形に統一すればよい。


  2^36 = 2^(3*12) = (2^3)^12 = 8^12
  3^24 = 3^(2*12) = (3^2)^12 = 9^12
  6^12
これで比べられますね。
  6^12 < 2^36 < 3^24

(2) 同じようにやればよい。
  3^(1/4) = 3^(21/84) = (3^3)^(7/84) = 27^(7/84) = (3^7)^(3/84) = 2187^(3/84)
  5^(1/6) = 5^(14/84) = (5^2)^(7/84) = 25^(7/84)
  7^(1/7) = 7^(12/84) = (7^4)^(3/84) = 2401^(3/84)
よって
  5^(1/6) < 3^(1/4) < 7^(1/7)

(3) これは2つずつ比をとってみればよいかな。

 log[3]2 = log(2)/log(3) = x
 log[7]4 = log(4)/log(7) = 2log(2)/log(7) = y
とおけば
 x/y = log(7) / 2log(3) = log(7) / log(9) < 1

 2/3=z とおくと
 x/z = (3/2)log(2)/log(3) = 3log(2) / 2log(3) = log(8) / log(9) < 1
 y/z = (3/2)log(4)/log(7) = 3log(4) / 2log(7) = log(64) / log(49) > 1

よって
 x<z<y → log[3]2 < 2/3 < log[7]4
    • good
    • 2
この回答へのお礼

助かりました

非常に分かりやすいご説明ありがとうございます!

お礼日時:2017/04/13 00:15

高校数学はいろいろなローカルルールがあって, 扱いが面倒ですが...


3 の 4 乗根, 5 の 6 乗根, これら 2 つは, どのように定義されているのですか.
あるいは, 貴方は学校でどのように教わったのでしょうか.
こういう質問サイトは, 非数学専攻者や, 教えることに関する素人も回答するので, 利用に際しては慎重さが要求されます.
    • good
    • 0
この回答へのお礼

普段はこのような累乗根を口頭ではあまり言わないので、こちらに表記するのに困って、聞いたことのあるこの言い方でお伝えしただけです。学校でもこのように習いました。それぞれ4乗して3になる数と、6乗して5になる数を示します。

お礼日時:2017/04/13 00:18

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qsinθ=1の三角形ってどうやって書くんですか?この場合θ=90になりますがどんな図形だか想像できな

sinθ=1の三角形ってどうやって書くんですか?この場合θ=90になりますがどんな図形だか想像できないのです。もしかして描けないんですかね。

Aベストアンサー

三角形は描けません。

三角形の定義「同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形」に反します。
sinθ=1の場合は2つの点しか存在せず、1つの線分しかない上、多角形でもありません。
従って、描けるのは1本の線分であって三角形ではありません。

これが三角関数で三角形を扱う問題であるなら、sinθ≠1の条件が必要です。

Q数学の問題についての皆さんへの質問です。よろしくお願いします。

(X-A)^4+(X-B)^4=(A-B)^4を解きなさい。但A≠Bなりとする。という問題です。

この方程式はX=A及びX=Bの2根を有する。
よってこの方程式(X-A)^4+(X-B)^4-(A-B)^4は「X=A及びX=Bにて割ることが出来る。」
と書いてあって(X-A)^4+(X-B)^4-(A-B)^4
=(X-A)(X-B){2X^2-2(A+B)X+4A^2+4B^2-6AB}と書いていました。

それで(X-A)^4+(X-B)^4-(A-B)^4を(X-A)(X-B)で実際にやってみたのですが
どうしても「(X-A)(X-B){2X^2-2(A+B)X+4A^2+4B^2-6AB}」になりませんでした。

そこで皆さんに教えてほしいのですが
「(X-A)^4+(X-B)^4-(A-B)^4」を「(X-A)(X-B)」で割る。
そして結果が「(X-A)(X-B){2X^2-2(A+B)X+4A^2+4B^2-6AB}」の答えが出るように
計算方法を教えてもらえませんでしょうか?よろしくお願いします。

Aベストアンサー

「X=A及びX=Bにて割る」というのは変な表現ですね。「(X - A) および (X - B) でくくる」という表現の方がよいのではないでしょうか。

つまり、X=A, X=B が根であるならば
  与式 = (X - A)(X - B)*f(x)
と書ける、ということです。

f(x) がどういう多項式になるかは地道に計算すればよいのですが、簡単のため
 X - A = a
 X - B = b
とおいてみましょう。そうすると
 A - B = b - a
ですから
 与式 = a^4 + b^4 - (b - a)^4
になります。これを地道に展開すれば
 a^4 + b^4 - (b - a)^4
= a^4 + b^4 - (b^2 - 2ab + a^2)^2
= a^4 + b^4 - (b^4 - 4ab^3 + 6a^2*b^2 - 4a^3*b + b^4)
= 4ab^3 - 6a^2*b^2 + 4a^3*b
= ab(4b^2 - 6ab + 4a^2)

このカッコ内は、
 4b^2 - 6ab + 4a^2
= 4(X - B)^2 - 6(X - B)(X - A) + 4(X - A)^2
= 4X^2 - 8BX + 4B^2 - 6[X^2 - (A + B)X + AB] + 4X^2 - 8AX + 4A^2
= 2X^2 - 2(A + B)X + 4A^2 -6AB + 4B^2
になりますよ。

>どうしても「(X-A)(X-B){2X^2-2(A+B)X+4A^2+4B^2-6AB}」になりませんでした。

どこかで計算間違いしているだけだと思います。ちゃんと紙に書いて計算してみてください。

「X=A及びX=Bにて割る」というのは変な表現ですね。「(X - A) および (X - B) でくくる」という表現の方がよいのではないでしょうか。

つまり、X=A, X=B が根であるならば
  与式 = (X - A)(X - B)*f(x)
と書ける、ということです。

f(x) がどういう多項式になるかは地道に計算すればよいのですが、簡単のため
 X - A = a
 X - B = b
とおいてみましょう。そうすると
 A - B = b - a
ですから
 与式 = a^4 + b^4 - (b - a)^4
になります。これを地道に展開すれば
 a^4 + b^4 - (b - a)^4
= a^4 + b^4 -...続きを読む

Qa * b / c の計算

a * b / c の計算

特に困っているわけではないのですが、エレガントな方法が見つからないので質問します。

a,c は32ビット、bは8ビット、0<a≦cがわかっているとします。
このとき、8ビットの整数計算値 a * b / c を最大32ビットの範囲で計算する方法、教えてください。
一応C言語で考えていますので、以下の***の部分の具体的な計算方法がわかればうれしいです。

int a,c; // 32bit 符号付き整数
char b,d; // 8bit 符号付き整数
if(a<2^(32-8)) d = a * b /c;
else **** ← この部分のプログラム

一応考えてみて、確信が持てない解は、
c = c/b; d = a/c;
です。気持としては、a,c が十分に大きいので、cで割る代わりにc/bで割ればよいという考えですが、
整数計算なので、本当にそれで合っているのか確信が持てない状態です。

Aベストアンサー

No.2の判定の仕方はダメダメでした。
  V =(int)(d2 * S / U)-b
  V≧0 なら d=d1, さもなくば d=d2
というのだと良いと思うが、いや、まだ計算間違いしているかもしれないなー。

Qこの図形の名前は...扇形?いや..違うか..

数学で扇形といえば添付画像1.
それでは2には名前はあるのでしょうか.
やはり扇形でしょうか.

Aベストアンサー

英語ではannular sectorでわりと画像が出てきますね。扇形のcircular sectorとも対応が取れているので自然な名前だと思います。
問題は日本語ですが、annular sectorを直訳すれば環状扇形で、用例もわずかにあるように見えます。

Q高校数学の質問です。 (5)と(6)の解き方が分からないので、分かりやすく教えて頂けないでしょうか。

高校数学の質問です。
(5)と(6)の解き方が分からないので、分かりやすく教えて頂けないでしょうか。
よろしくお願いしますm(._.)m

Aベストアンサー

http://www2.edu-ctr.pref.okayama.jp/math/204/20412.html

y=log a x は、y=a^x とy=x に対して対称 つまり 逆関数です。
グラフがわかった時点で、

5) log3 x は、底>1なので
lim 【x→+0】log3 x=ー∞
よって
与式=lim 【x→+0】 (1/log3 x)=1/(ー∞)= ー0
つまり、マイナス値をとりながら段々 0に近づきます!

6) 対数の公式
log a b=log b/log a より
log(1/2) 1/x =log (1/x)/log (1/2)=log (x^(ー1))/log(2^(ー1))
=ーlog x/ (ーlog 2) … …(1)
ただし、底は、10でもeの自然対数でもどちらでもよくて 1を超えるものとする。

よって(1)より、 与式=lim 【x→∞】 (ーlog x/(ーlog 2 )= ∞
(∵ log 2 は正の定数なので )

http://www2.edu-ctr.pref.okayama.jp/math/204/20412.html

y=log a x は、y=a^x とy=x に対して対称 つまり 逆関数です。
グラフがわかった時点で、

5) log3 x は、底>1なので
lim 【x→+0】log3 x=ー∞
よって
与式=lim 【x→+0】 (1/log3 x)=1/(ー∞)= ー0
つまり、マイナス値をとりながら段々 0に近づきます!

6) 対数の公式
log a b=log b/log a より
log(1/2) 1/x =log (1/x)/log (1/2)=log (x^(ー1))/log(2^(ー1))
=ーlog x/ (ーlog ...続きを読む

Q割り算の分配法則について質問されたら?

中学生1年生に割り算の分配法則(添付画像)について、「何故こうなるのでしょうか?」と質問されたら、どのように説明するのがベストなのでしょうか?

Aベストアンサー

法則に理屈をつけて理解させるのは、間違いだと個人的に思っています。

・ まず、法則として覚えさせる。
・ 感覚が身につく
・ あとで、意味がわかる

って言うのが大切です。抽象的な法則や公式は、抽象的なゆえに、実例を伴わず、感覚が得にくいもの。
丸暗記して、計算が解けるようになってから、本当はこういう意味なんだ・・・って覚えるのが本質。

高等教育では、みんな自然にそうやっている。物理学の最先端だって、使えるものが使った後、問題が
とけらたら、本質の意味を問い直す。そんなアタリマエのことが、なぜか、意味を考えましょう・・・
になってしまう。変な話です。

難問も問題を解いていけば、大きさの違うピザを、

・別々の皿で等分して、それぞれからもらっても、
・2枚重ねて、等分しても

もらう量は同じだよね・・・・とか、自然に意味がついてくるものです。

掛け算に言い換えると、カッコでくくれる話と同じだとかもありですが、ではなぜ、掛け算ではカッコでくくれるか?
証明になっていませんね。どこまでを前提として、どこからを応用とするか、実は微妙なのです。

専門家でもない限り、まずは暗記と、練習問題による経験。暗記や詰め込みはよくない・・・って、勉強をしたことがない人の意見です。
暗記や、つめこみのなかで、自分が感覚的に見出したものが、本当の考えるもとになる、知識や知力になります。

法則に理屈をつけて理解させるのは、間違いだと個人的に思っています。

・ まず、法則として覚えさせる。
・ 感覚が身につく
・ あとで、意味がわかる

って言うのが大切です。抽象的な法則や公式は、抽象的なゆえに、実例を伴わず、感覚が得にくいもの。
丸暗記して、計算が解けるようになってから、本当はこういう意味なんだ・・・って覚えるのが本質。

高等教育では、みんな自然にそうやっている。物理学の最先端だって、使えるものが使った後、問題が
とけらたら、本質の意味を問い直す。そんなアタリマ...続きを読む

Q大学数学に初日で躓きました…勉強法を教えてください。 今日から授業が始まったのですが、初日の数学で早

大学数学に初日で躓きました…勉強法を教えてください。

今日から授業が始まったのですが、初日の数学で早速躓きました。(高校の復習として極限と逆関数?をやりました)
私は理系の癖に数学が苦手で、センターでは1Aはまだ8割いくのですが、2Bは40点代という有様です。しかも高校のレベルが低かったため数3は開講すらされていません。

先生も友達も「今日はただの復習で楽勝だね〜」と言っていたので、ちんぷんかんぷんの私は余計焦りました。せめて授業を理解できるようになりたいので予習をしようと思うのですが、どの範囲からどのように勉強したら良いでしょうか。
馬鹿な質問で申し訳ないですが、よろしくお願いします。

Aベストアンサー

う~ん、と言うことは、入試で数Ⅲは必要なかったって事ですね。
だったら、それは、講義をする先生が考慮するべきだと思いますよ。
まず、先生のところに行って、高校で数Ⅲを勉強していない事を相談してみて下さい。
多分、友達は楽勝かも知れませんが、似たような生徒は他に必ずいるはずです・・・だって、数Ⅲは入試科目でなかったんですから。

それから、大学の教科書は、高校数学を知っていることを前提として書かれているので、高校数学の参考書を利用してみて下さい。
・・・なるだけ易しいもので、解説が丁寧な物がいいと思います。

また、数Ⅲを勉強していない生徒を見つけ出して、みんなで勉強するのも良い方法かと思います。

それと、講義のシラバスが配布されていても、先生に次回の授業で何を講義するのか訊いておく方がいいですね。
先生から、数Ⅲのどの内容と関わる授業をするのか尋ねて、その部分を予習すれば良いと思います。

頑張って下さいねp(^^)

Q指数法則でこの式(画像)が成り立つ理由を教えてください……

画像の式が成り立つ理由を教えていただけないでしょうか><。
よろしくお願いしますorz

Aベストアンサー

一般的には「テイラー展開」、お示しの式であれば「0 の周りのテイラー展開」つまり「マクローリン展開」というものです。

公式としては下記に載っています。「2. e^x」を見てください。
x = z + w として適用すれば、質問文の式になります。
http://w3e.kanazawa-it.ac.jp/math/category/suuretu/suuretu/henkan-tex.cgi?target=/math/category/suuretu/suuretu/maclaurin.html

証明は「テイラーの定理」の方に書かれていますので、興味があればなぞってみてください。
http://w3e.kanazawa-it.ac.jp/math/category/suuretu/suuretu/henkan-tex.cgi?target=/math/category/suuretu/suuretu/taylor-teiri.html

Q高校数学A 循環小数についての質問です!

分数をm/nで表すとします。nの素因数が2,5以外のものがあるときに、m/nは無限小数にはならずに循環小数になる理由を教えて下さい!
ご回答宜しくお願いします!<(_ _)>

Aベストアンサー

>>整数になったらなぜ有限小数なのかがイマイチわからなかったのです。
循環が無限に続くなら、有限の10ᵏを掛けても整数に成らないでしょう?

例えば、0.1234なら、=1234/10000の事なんだから、10000を掛ければ1234。
0.123412341234・・・・なら、10の何乗を掛けたって、小数点以下が残る。

>>鳩ノ巣の原理というやつですか?
そうです。

赤100枚、青100枚、黄100枚のカードが入ってる袋の中から、適当に4枚取ったら、同じ色のカードが必ず混じる。って事です。

Qこの問題の解き方がわかりません。 教えていただけますでしょうか?

この問題の解き方がわかりません。
教えていただけますでしょうか?

Aベストアンサー

この手の問題はまず、xかyの一方にまとめます。

xでまとめると
x^2-6x+(9-y^2)となります。

この(9-y^2)を因数分解、
x^2-6x+(3-y)(3+y)

足して6、掛けて(3-y)(3+y)になる数は(3-y)と(3+y)ですから
{x-(3-y)}{x-(3+y)}

よって、
(x-3+y)(x-3-y)

これをx,y,定数項の順にまとめて、
(x+y-3)(x-y-3)
です。


人気Q&Aランキング