【お知らせ】カテゴリの見直しについて

反時計回りの円板上の人が円板の外に向かってボールを投げたとします。この時、円板上の人、すなわち非慣性系ではコリオリの力の向きは反時計回りである場合物体の進行方向右向きとなる。
と聞いたのですが、

円板は反時計回りに回転しているのだから、コリオリの力の向きは時計回りの方向にかかると思ったのですが、なぜ間違っているかわかりません。

電車内の慣性力については理解できたのですが、コリオリの力がなぜあのような字を描くのかが理解できません。

教えてください。

質問者からの補足コメント

  • なんとなくイメージは湧きますが、なにかモヤモヤします笑

    慣性力は非慣性系で観測した時に、慣性系で観測した時の加速度とは逆向きに働く力がかかるのですよね?

    円運動では中心方向に加速度がかかるはずなのにコリオリの力は何の加速度と逆向きに力が働いているのですか?

    No.1の回答に寄せられた補足コメントです。 補足日時:2017/04/26 18:19

A 回答 (7件)

簡単のため、反時計回りする円板の円周に対して垂直外向きにボールを投げ出したとします(;・・)へ ≡O


すると、地面で静止している人からは、ボールを投げた時の自分の速度と、自分が投げたボールの速度のベクトル和の方向にボールは飛んでいきます。
・・・空気抵抗や重力を無視すると、等速直線運動しますね(^^)
で、ボールを投げた自分なんですが、円板が反時計回りしているために、ボールの軌道が右向きに曲げられる様に見えます(◎◎!)
これは、図を描けばすぐに分かりますよ(^^)
静止した地面の上に反時計回りする円板と自分の顔の向きを描きます・・・そして、投げ出されたボールの軌道として、地面から見たものを描きます
ボールは等速直線運動するので、軌跡は直線ですね・・・それを円板上の自分が見たとき、ボールを見つめる顔の向きを色々な場所で調べてみて下さい。
すると、円板が回転するにつれて、顔の向きはどんどん右を向いてくることが分かります(^^)

まあ、コリオリの力と言っても、別に難しい物では無く、あくまで、回転している自分にとって、物体の運動が、どんな風に見えるの・・・って事から出てきているだけです(^^;)

不明な点がありましたら、また質問してみて下さいね(^^)

参考になれば幸いです(^^v)
この回答への補足あり
    • good
    • 0
この回答へのお礼

理解できそうで、できない状態なので今回は飛ばして先に進もうと思います。

ありがとうございました❗️

お礼日時:2017/04/27 18:20

カラクリがあるとすれば、コリオリの力を観測しているカメラの場所です。


カメラは円盤の一番外に設置されていて、円盤の回転と一緒に回転します。
中心で回転している人の速度と、外側で回転しているカメラの速度の差で、
カメラ方向に飛んでいくボールの速度よりも速くカメラの方が進むために、
カメラから見た映像では、ボールが遅れてくる分右側にカーブして見える。
つまり見かけ上の力であり、実際に働いている力ではないと言うことです。
    • good
    • 0

>物体の進行方向右向きとなる。


>コリオリの力の向きは時計回りの方向にかかる

私には同じことを言ってるように思えるのですが?
    • good
    • 0

>円運動では中心方向に加速度がかかるはずなのに


コリオリの力は、回転系の中で動いている、つまり
円運動から外れた動きにかかる見かけの力です。

加速度は回転系の物体の動きを地道に時間微分すれば
直ぐに判ります。
    • good
    • 0

>コリオリの力の向きは反時計回りである場合物体の進行方向右向きとなる。





>コリオリの力の向きは時計回りの方向にかかると思ったのですが、

は、ボールが回転中心から外に向かうときは同じ右曲がりだと
いうのは判りますよね?
    • good
    • 0

投げられたものは、「投げられた初速度+投げた瞬間にその座標系が持っていた初速度」で直線運動します。



「電車内の慣性力については理解できた」のは、観測者の速度が、投げた後も「投げた瞬間にその座標系が持っていた初速度」とずっと同じだからです。

回転運動では、観測者の速度は、「向心力」によって「投げた瞬間にその座標系が持っていた初速度」から時々刻々変化します。それに対して、「投げられたもの」は、投げられたときの初速度で直線運動します。
その差が「コリオリの力」としての「見かけ上の力」なのです。
力が働いているのは、ボールではなく、観測者の方です。

「慣性力は非慣性系で観測した時に、慣性系で観測した時の加速度とは逆向きに働く力がかかる」という思い込みが、理解を難しくしているように思います。(「遠心力」はこの考え方で理解できますが、「コリオリの力」はこの考え方では理解できないでしょう)

単純に考えます。

(1)回転する円板上で、ボールを半径方向の「外側」に投げます。
 ボールが、投げられた瞬間に持つ「円周方向」の初速度は、「その半径における周速度」です。ということは、円周の外側に進めば、円板のその半径の周速度よりも遅いわけです。つまり、円板の回転よりも遅れてしまいます。半径方向に外側を見ている観測者には、回転と逆方向に曲がって遅れて行くように見えます。
 反時計回りなら「右側」だし、もし時計回りに回っていれば「左側」に曲がります。

 静止座標系から見れば、ボールは「投げた半径方向の初速度+投げた瞬間の周速度」の合成方向に等速直線運動します。

(2)反対に、回転する円板上で、ボールを半径方向の「内側」に投げます。
 ボールが、投げられた瞬間に持つ「円周方向」の初速度は、「その半径における周速度」です。ということは、円周の内側に進めば、円板のその半径の周速度よりも速いわけです。つまり、円板の回転よりも進んでしまいます。半径方向に内側を見ている観測者には、回転の方向に曲がって先に進んで行くように見えます。
 反時計回りなら「右側」だし、もし時計回りに回っていれば「左側」に曲がります。

 これも、静止座標系から見れば、ボールは「投げた半径方向の初速度+投げた瞬間の周速度」の合成方向に等速直線運動します。

 この2つの状態が想像できれば、「電車内の慣性力」と同じように理解できませんか?

 結局は、#1のナッキーナッキーさんと同じことを言っていますね。
    • good
    • 0

下の図の通り。


ボールは円板の外から見ると、下から上に直線軌道。
円板の中にいて、円板と一緒に回転してる人には点線の様に見える。
「コリオリの力」の回答画像2
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q1GB(ギガバイト)って、何g(グラム)の重さですか?

こんにちは。
1GBは、何グラムでしょうか?
GBがデータの単位で、グラムが重さの単位であることはもちろん理解している上での質問でございます。

パソコンで作った1GBのデータは、Wifiに乗せて他の家のサーバーやパソコンやスマホに運べるということは、確かに物体として存在するわけで、どのくらいのデータ量(GB)が集まったら、やっと1gになるのでしょうか?
よろしくお願い致します。

Aベストアンサー

有名な「マクスウェルの悪魔」に関連して、「シラードのエンジン」という話があります。
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E6%82%AA%E9%AD%94#.E3.82.B7.E3.83.A9.E3.83.BC.E3.83.89.E3.81.AE.E3.82.A8.E3.83.B3.E3.82.B8.E3.83.B3

簡単に結果を述べれば、もし、熱力学の第二法則が正しい(第二種の永久機関が作れない)とするなら、
温度Tの環境で、1bitのデータを記憶するには、最低でも、k*T*log(2) のエネルギーが必要です。
例えば、T=300(K) (27℃)だとすると、1GB 記憶するには、
https://www.google.co.jp/search?q=%28Boltzmann+constant%29%2a%28300+kelvin%29%2aln%281e9%29
8.58346389 × 10^-20 ジュールのエネルギーが必要です。
さらに、有名な E=MC^2 を使えば、これは、
9.55039158 × 10^-37 キログラムに相当します。
https://www.google.co.jp/search?q=%28Boltzmann+constant%29%2a%28300+kelvin%29%2aln%281e9%29%2f%28c%5e2%29

有名な「マクスウェルの悪魔」に関連して、「シラードのエンジン」という話があります。
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E6%82%AA%E9%AD%94#.E3.82.B7.E3.83.A9.E3.83.BC.E3.83.89.E3.81.AE.E3.82.A8.E3.83.B3.E3.82.B8.E3.83.B3

簡単に結果を述べれば、もし、熱力学の第二法則が正しい(第二種の永久機関が作れない)とするなら、
温度Tの環境で、1bitのデータを記憶するには、最低でも、k*T*log(2) のエネルギーが必要です。
例えば、T=300...続きを読む

Qヨーヨーが戻る原理について教えてください

小学生の子に、
『ヨーヨーはなぜ戻ってくるの?』
と聞かれています。
噛み砕いて答える前に、私が理解しないといけないのですが、以下で合ってますでしょうか?

・ヨーヨーは手の高さでまず位置エネルギーを持つ。

・手から放された瞬間、軸とそれを巻く糸の間で摩擦が働き、軸は(ヨーヨーは)回転する。

・その結果、「位置エネルギー」+「運動エネルギー」をヨーヨーは持つ。

・糸が一番下まで伸びた時、糸の張力が働き、慣性の法則から、ヨーヨーは反転する。

・ここでエネルギー保存の法則より、張力で引かれた以外のエネルギーはまだ残っているので、上昇方向への回転(運動エネルギー)へと変わる。

私としてはこんな感じで理解してます。
今の段階(子どもに噛み砕く前の段階)でどこか間違ってたらどなたか指摘ください。

あと、ヨーヨーの回転が反転するには、自分でちょっと引っ張りあげないといけないと思うのですが、あれを物理ではどう説明するのが正しいでしょうか。

あの瞬間に逆回転となる理屈が私自身、よく分かってないのでどなたかお教え下さい。
よろしくお願いいたします。

小学生の子に、
『ヨーヨーはなぜ戻ってくるの?』
と聞かれています。
噛み砕いて答える前に、私が理解しないといけないのですが、以下で合ってますでしょうか?

・ヨーヨーは手の高さでまず位置エネルギーを持つ。

・手から放された瞬間、軸とそれを巻く糸の間で摩擦が働き、軸は(ヨーヨーは)回転する。

・その結果、「位置エネルギー」+「運動エネルギー」をヨーヨーは持つ。

・糸が一番下まで伸びた時、糸の張力が働き、慣性の法則から、ヨーヨーは反転する。

・ここでエネルギー保存の法則...続きを読む

Aベストアンサー

No.4です。No.4で上げたリンク先には「回転しにくさ」と書いてありますが、これは「止まっているものを回転させるときの回転しにくさ」ということであり、回転しているときは「止めにくさ」ということになります。
つまり、「一定の回転を続けようとするもの」ということです。

重い電車は押してもなかなか動かないが、逆に、動いている電車はなかなか止まらない、というのと同じです。これが「慣性」ということです。

ヨーヨーも、下るときに軸まわりの「おもり」が回転し、最下端で最も回転が大きくなり、それが「止まりにくくて、行き過ぎて糸を巻き上げる」という動作をしているのです。

向かい合った斜面があって、一方から転がしたボールは、最下部では止まらず、勢い余って反対側の斜面をかなりの高さまで登りますね。これと同じです。
この例が一番分かりやすいかな?

Q原子核崩壊でα線やβ、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。

原子核崩壊でα線やβ線、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。放射性物質の半減期は何万年もあるものもあります。原子核が崩壊すればそのエネルギーが放射線となって放出されるのはわかるのですが、それは最初の一回だけ起こって、それが起こればもう起こらないのではないですか? つまり放射線も一回だけ出てもう出ない。それがずっと続いているというのは、ずっと原子核崩壊が続いているということなのでしょうか? 放射線が出続けるメカニズムがわかりません。ご教示よろしくお願いいたします。

Aベストアンサー

ある放射能を持つ核種が、単位時間に崩壊する確率は、置かれている環境に左右されません。その核種、固有値であることが経験的に知られています。
確率なので、1つの粒を見ていれば、

・ いつ崩壊するかは神のみぞ知るということで、だれにもわかりません。
・ もちろん、崩壊してしまえば、その粒からは放射線はでません。

ということになります。

その同じ核種を一定量集め、たくさんの粒を統計的に観察し、半分の粒が放射線を出して崩壊するまでの時間を半減期と呼ぶわけです。
たくさんの粒があるから、放射線が出続ける。別に不思議なことはないですね。

半減期ごとに半分になり、やがてすべて崩壊すると、放射線は出なくなります。

Qアインシュタインの相対性理論について、説明するならばどのように説明しますか? 簡単に教えてください!

アインシュタインの相対性理論について、説明するならばどのように説明しますか?

簡単に教えてください!

Aベストアンサー

俺には、

https://blogs.yahoo.co.jp/astraysheep2

の説明が、一番わかりやすい。

Q第一宇宙速度で真上に打ち上げた場合

第一宇宙速度の約 7.9km/sで物体を水平に発射すると,空気抵抗や地球の自転等の影響を無視すれば地球を約84分で一周して元の場所に戻ってくると聞きました。

ではこの速度で真上に打ち上げた場合,第二宇宙速度の11.2km/sには足りないのでどこかで下降に転じると思うのですが,それは地上何kmでそこまで何分かかるのでしょうか?

Aベストアンサー

第一宇宙速度は、円運動の周速度です。
この速度で、加速度なしで等速運動する場合を考えています。

 宇宙レベルで考えると、「重力加速度」が一定とは考えれらなくなります。実際、#1さんの計算した「高度3100km」は、地球中心からの半径が 6371 + 3100 = 9471 km ということですから、地表の地球半径の約1.5倍で、万有引力の法則から、重力加速度は (1/1.5)^2 ≒ 0.44 つまり地表の半分以下になっています。

 ということで、正確には第二宇宙速度の計算のように「重力場の位置エネルギー」で計算する必要があります。

 無限遠を基準にした「重力場の位置エネルギー」は、地球表面では、地球の半径を R として
  U = -GMm/R
となります。
 同様に、地球中心からの距離を H の宇宙船の位置エネルギーは、
  -∫[∞→H](GMm/r^2)dr
なので、地表の位置エネルギーとの差が「打ち上げ時の運動エネルギー」ということになります。つまり
  -∫[∞→H](GMm/r^2)dr - ( -GMm/R ) = (1/2)mv^2
ということです。これより、
 (1/2)mv^2 = -GMm/H + GMm/R = GMm(1/R - 1/H)
→  GMm/H = GMm/R - (1/2)mv^2
→  1/H = 1/R - (1/2)v^2 /GM
→  H = 1/[ 1/R - (1/2)v^2 /GM ]

あとはこれに数値を入れて、
 R = 6371 km = 6.371 * 10^6 m
 M = 5.972 * 10^24 kg
 G = 6.674 * 10^(-11) m^3kg^(-1)s^(-2)
 v = 7.9 km/s = 7.9 * 10^3 m/s
より

H = 1/[ 1/(6.371 * 10^6 [m]) - (1/2)(7.9 * 10^3 [m/s])^2 / ( 6.674 *10^(-11) * 5.972 * 10^24 [m^3/s^2] )
 ≒ 1/[ 1.570 * 10^(-7) - 0.783 * 10^(-7) ]
 ≒ 1/[ 7.87 * 10^(-8) ]
 ≒ 1.27 * 10^7 (m)
 = 12700 (km)

ということです。地球の半径が 6371 km ですから、これを差し引くと地上からの高さ 6300 km 程度ということで、「地球半径程度の高さ」ということです。
 なお、静止衛星の軌道が地上約 36000 km ですから、これよりはかなり低いです。

第一宇宙速度は、円運動の周速度です。
この速度で、加速度なしで等速運動する場合を考えています。

 宇宙レベルで考えると、「重力加速度」が一定とは考えれらなくなります。実際、#1さんの計算した「高度3100km」は、地球中心からの半径が 6371 + 3100 = 9471 km ということですから、地表の地球半径の約1.5倍で、万有引力の法則から、重力加速度は (1/1.5)^2 ≒ 0.44 つまり地表の半分以下になっています。

 ということで、正確には第二宇宙速度の計算のように「重力場の位置エネルギー」で計算する必要があ...続きを読む

Qヘリコプター

巡行速度(例えば100キロ)で飛んでいたとして、後ろのプロペラ(テイルローター)が何の兆候もなくいきなり外れたら機体はどうなりますか? また、その外れたローターはどっち方向に飛びますか?

Aベストアンサー

>後ろのプロペラ(テイルローター)が何の兆候もなくいきなり外れたら機体はどうなりますか?

テイルローターが回転を停止すると、機体はメインローターの回転に対して逆回転を始めます。

>また、その外れたローターはどっち方向に飛びますか?

テールローターは、ローターを機体に押し付ける方向で回転しているので、回転が停止するまでは機体から外れにくいですが、回転が停止した後は、今度は機体のテイル部分がローターを押し続ける格好になります。

Qニュートンのような近代の物理学者は 物理法則が根本的に対称的であることを純粋に信じていた、 というイ

ニュートンのような近代の物理学者は
物理法則が根本的に対称的であることを純粋に信じていた、
というイメージがあるのですが、

だとしたら、現に身の回りの物質の位置が全然対称的でないことをどのように理解していたのでしょうか?

Aベストアンサー

対象の意味がわかっていませんね。物理の思想を、日常の感覚で置き換えて質問しても無意味です。

Q物理における座標系の意味

工学部機械科の一年生です。

今、慣性系と非慣性系のところをやっていて座標系というのが出てきているのですが、座標系とは「運動している物体をどこを基準にして観測するか」というのであっていますか?

検証よろしくお願いします

Aベストアンサー

それでOKです(^^)
なんでしたら、観測者から見た座標軸って考えてもいいですよ(^o^)
運動している観測者の場合は、その観測者と一緒に座標軸も動いているって事ですね(^^)

参考になれば幸いです(^^v)

Qアインシュタインは、なぜ、相対性理論によっては、ノーベル賞を受賞できなかったのでしょうか?

アインシュタインは、光電効果の理論的解明により、1921年のノーベル物理学賞を受賞しました。
しかし、相対性理論によっては、受賞しておりません。
相対性理論を提唱した当時は、この理論は評価がはっきりしていなかった、とは思います。しかし、しだいに評価が高まり、彼は世界的に知られるようになりました。
したがって、後年になれば、彼はノーベル賞の受賞に値する、と思います。
なぜ、アインシュタインは、相対性理論によっては、ノーベル賞を受賞できなかったのでしょうか?

Aベストアンサー

「相対性理論」は一つの「仮説」であって、実験的事実によって「検証」されることでその正しさが認められます。

アインシュタインの相対性理論は、1905年に「特殊」、1916年に「一般」が発表され、その理論から得られた結論の一部が1919年の日食の「光の曲がり」として観測されたりして「検証」されつつあったものの、1921年の時点ではまだ「賛否両論」が残っていて、選考委員からは全体の「検証」がされているとはみなされなかったのでしょうね。(重力波が観測されたのはやっと2016年のことですから)

現代でも「相対性理論は間違っている」というトンデモ反相対論があちこちに見られるぐらいです。

Q相対性理論とはなんですか? 最近なぜか分かりませんが、相対性理論が流行っていて、話についていけません

相対性理論とはなんですか?
最近なぜか分かりませんが、相対性理論が流行っていて、話についていけません。
僕でも理解できるようにどなたか回答お願い致します。
僕にとって分かりやすかったと思った説明をしてくださった方をVIPに選びますね(^∇^)

Aベストアンサー

私も中学生の頃に読んだ本の知識しかないんだけどね。
ちなみに計算自体は中学生数学でどうにかなる。
だけど、相対性理論で出てくる現象を理解するには、少なくとも高校生レベルの知識が必要になる。
多分君の周りで相対性理論の話題を出している人たちも、現象の半分も理解できていないと思うよ。

さて、じゃあ超簡単にどんなものかと言うと、要するに物理の理論。
細かい事を言い出すとメチャクチャ難解な理論。
で、「特殊相対性理論」と「一般相対性理論」の二つに分かれる。
ちなみに難易度は一般相対性理論の方が高い。

んじゃどんな現象のことかっていうと
特殊相対性理論では
1、光より速く動けるものはない
2、光に近い速度で動いているものの長さは縮んで見える
3、光に近い速度で動いているものの時間は遅く流れる
ってこと。
一般相対性理論は特殊相対性理論に重力を加味したもので
1、重力の強い場所ほど時間が遅く流れる
2、重力の強い場所ほど空間が歪む
3、止まっているものでもエネルギーがあって、重いほどエネルギーが大きい
てなとこ。

これらを様々な数式を使って証明して「ほらね、俺の言った通りでしょ?」っていう話。

でもってこれらの理論によって、宇宙の始まりって言われているビッグバンや、ダイソンの掃除機よりも何でも吸い込んでしまうブラックホールも、さっき挙げた6つのことで説明することができる。
どうやってそれを説明するかって話は、難しい話になるから割愛するし、何より私も説明しきれるほど知らない。

かなり簡単にエッセンスだけを抽出してみた。
とりあえず数式を解くだけなら中学生の数学で解けるけど、理解しようとしたら高校生くらいまで待てって話。

私も中学生の頃に読んだ本の知識しかないんだけどね。
ちなみに計算自体は中学生数学でどうにかなる。
だけど、相対性理論で出てくる現象を理解するには、少なくとも高校生レベルの知識が必要になる。
多分君の周りで相対性理論の話題を出している人たちも、現象の半分も理解できていないと思うよ。

さて、じゃあ超簡単にどんなものかと言うと、要するに物理の理論。
細かい事を言い出すとメチャクチャ難解な理論。
で、「特殊相対性理論」と「一般相対性理論」の二つに分かれる。
ちなみに難易度は一般相対性理...続きを読む


人気Q&Aランキング