数学の√の質問です。




√6=2.45 √60=7.75とするとき次の数の値を求めよ。




① √3/5. ②√135


詳しい解説もほしいです。
よろしくお願いします。

A 回答 (4件)

√3/5=2√3/10=√12/10=√6√2/10=2.45√2/10=0.245√2



√135=√(9*15)=3√15=3√(60/4)=3*7.75/2=23.25/2=11.625
    • good
    • 0

√3/5 とは


 (√3) /5
 √(3/5)
のどちらですか?

(√3) /5 は難しそうなので、√(3/5) と解釈すると

 √(3/5) = √(60/100) = (√60) /10 = 7.75/10 = 0.775

 √135 = √[ 60 × (9/4) ] = √60 × (3/2) = 7.75 × (3/2) = 11.625

これだと √6 を使わないなあ。
    • good
    • 0

① √3/5=√0.6=√60/100 と考え、 =√60/√100 よって


  √60÷10=0.775

② √135=√540/4 と考える、(最小公倍数と平方の数から、)
  =√540÷√4=√9√60÷2=√60×3÷2=11.625

参考までに。
    • good
    • 0

① √(3/5)=√(60/100)=2.45/10=0.245


② √135=√(9×15)=√(9×60÷4)=3×2.45÷2=3.675
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q1=√1=√(-1)(-1)=√(-1)√(-1)=i・i=-1

1=√1=√(-1)(-1)=√(-1)√(-1)=i・i=-1
∴ 1=-1

は明らかにおかしいですが具体的にはどこがおかしいのでしょうか?

色々調べてみたところ,

√(-1)(-1)=√(-1)√(-1)

というところがおかしいみたいで,「√(ab)=√a√b」が成り立つのは,"a,b≧0"のときだけということまではわかりました.
なので上のような変形はできないとのことです.

では,a≧0,b<0のときはどうなのでしょうか?

つまり,a≧0を実数として,

√(-a)=√(-1)a=√(-1)√a=i√a

はなぜ大丈夫なのでしょうか?

上の議論だと,-1<0なので「√(ab)=√a√b」が適用できず,単純に

√(-1)a=√(-1)√a

としていいのだろうかと感じました.

それとも他の場所でしてはならないことをしていたのでしょうか?

混乱してしまったので教えてください.

Aベストアンサー

√(-a) = √(-1) √a は、いろいろと論点を含んだ式です。

まず、等式の成立不成立以前に、両辺がそれぞれ示す値が特定できない。
-a の平方根も、-1 の平方根も、複素数の範囲で2個づつ在り、
√(-a) や √(-1) という書き方では、そのどちらを示しているのか
判断することができません。
それを踏まえて、2通り×2通り=計4通りの式の意味のうち、
2個は成立し、2個は成立しないのです。

この事情は、1 = √(-1) √(-1) = -1 の時と全く同じです。
違うのは、1 = √(-1) √(-1) を満たすような2個の
√(-1) の選び方と
√(-1) √(-1) = -1 を満たすような2個の
√(-1) の選び方に
共通のものが無いため、全体として 1 = √(-1) √(-1) = -1 を満たす

√(-1) の値の選び方の組が存在しないのに対して、
√(-a) = √(-1) √a のほうには、式が成立するような
√(-a) と √(-1) の値の選び方が存在するということです。
だから、ある意味「大丈夫」だとも言えます。

しかし、√(-a) = √(-1) √a が「成立する」と言うときに、
式が成立するような √(-a) と √(-1) の選択が在ることを言っているのか、
√(-a) と √(-1) の任意の選択に対して成立することを言っているのか、
その辺がハッキリしません。
前者の意味では大丈夫であり、後者の意味では大丈夫ではないのですが。

また、√a も伏兵です。a が非負実数なので、ウッカリしていると、
√a は a の平方根のうち正のほうで問題ないような気がしてしまいますが…
√(-a) = √(-1) √a は、両辺が虚数となる式なので、
√a の √ も、複素平方根関数を意味しているのかもしれません。

複素 √z の z に、たまたま正の実数値が代入されたときだけ
突如多価でなくなって、正のほうの値だけを表すというのも、
連続性や微分可能性の意味で問題ある解釈です。

探せば、まだまだ問題点が見つかりそうです。
要するに、多様な解釈を許してしまいそうな、記号法に説明力の足りない式を、
式だけ書きっぱなしにして注釈を添えなかったことに、問題があったのです。
数式は、数学文の一部に過ぎませんから、一般に、式だけで完結させようと
がんばらないで、意図が十分伝わるように、注釈を書き添えたほうがよいのです。

√(-a) = √(-1) √a は、いろいろと論点を含んだ式です。

まず、等式の成立不成立以前に、両辺がそれぞれ示す値が特定できない。
-a の平方根も、-1 の平方根も、複素数の範囲で2個づつ在り、
√(-a) や √(-1) という書き方では、そのどちらを示しているのか
判断することができません。
それを踏まえて、2通り×2通り=計4通りの式の意味のうち、
2個は成立し、2個は成立しないのです。

この事情は、1 = √(-1) √(-1) = -1 の時と全く同じです。
違うのは、1 = √(-1) √(-1) を満たすような2個の
√(-1) の選...続きを読む

Qf(a+√b)=c+√b f(a-√b)=c-√b f(a+bi)=c+dif(a-bi)=c-di

f(a+√b)=c+√b
ならば
f(a-√b)=c-√b
は成り立ちますか。
√の中は変わらないので計算後も√bのままでいいでしょうか。

f(a+bi)=c+di
ならば
f(a-bi)=c-di
は成り立ちますか。
前回の質問が締め切られてしまいました。
前回回答いただきましたTacosanさま、かなり考えましたがヒントに最後まで答えることが出来ず、申し訳ありませんでした。一定の条件がわかりませんでした。こちらにも是非回答お願いいたします。詳しい回答本当にありがとうございました。

Aベストアンサー

反例:
xの一次式
f(x) = x ・(1-√2) + √2

f(1+√2) = (1+√2)・(1-√2) + √2
=1-2 + √2
=-1+ √2

f(1-√2) = (1-√2)・(1-√2) + √2
= 1 -2√2 + 2 + √2
= 3 - √2 ≠ - 1 - √2

---
f(x) = g(a,|x-a|) + (x - a)
と表せるなら
 f(a+√b) = g(a,|√b|) + √b = g(a,√b) + √b
 f(a-√b) = g(a,|-√b|) + (-√b) = g(a,√b) - √b
c = g(a,√b) とすれば
 f(a+√b) = c + √b
 f(a-√b) = c - √b
です。
ですが、 c + √b という形を見ただけでは、√b が「 + (x-a) 」に由来するものなのか、g(a,|x-a|)の|x-a|に由来するものなのか、g()に由来する xに依存しない定数√b なのか、判断できません。

Q√12 + √3/4 = 2√3 + √3/2 = 5/2√3

√12 + √3/4 = 2√3 + √3/2 = 5/2√3

√と分数の計算を教えてください。

この問題ですが、最後なぜ5/2になるのかわかりません。
√3 + √3 = 2√3 で 2+2√3/2 = 4/2√3
ではないのでしょうか?

Aベストアンサー

√3をtと置いてみてください。

√12+√(3/4)
=√(2^2×3)+√(3/2^2)
=2√3+√3/2
√3をtと置くと、
=2t+t/2
通分すると
=(4t+t)/2
=5/2×t
tと戻すと、
=5/2√3

でしょ?

Qf(a+√b)=c+√dのときf(a-√b)=c-√dは成り立ちますか。

f(a+√b)=c+√dのときf(a-√b)=c-√d
f(a+√b)=c+√dのときf(-a+√b)=-c+√d

f(a+bi)=c+diのときf(a-bi)=c-di
f(a+bi)=c+diのときf(-a+bi)=-c+di

以上4つの式は成り立ちますか。

何度か√の符号だけ違う数やiの符号が違う数を3次関数や分数関数に代入したときは上記の性質が成り立っていました。

Aベストアンサー

本当に「a, b, c, d は『実数』」でいいですか? もしそうなら
f(a+bi)=c+diのときf(a-bi)=c-di
以外は成り立たない例が容易に作れます. 例えば
f(a+√b)=c+√dのときf(-a+√b)=-c+√d

f(a+bi)=c+diのときf(-a+bi)=-c+di
が成り立たない例は一瞬で作れていいはずです.

逆に, 一定の条件を付けると
f(a+bi)=c+diのときf(a-bi)=c-di
は必ず成り立ちます.

QAB=√3、AC=√2、COSA=1/√6のような△BCにおいて

AB=√3、AC=√2、CosA=1/√6のような△ABCにおいて、AB→=b→、AC→=c→とし、頂点Aから対辺BCに引いた垂線をADとするとき、AD→をb→、c→で表せ。 また垂心をHとして、AH→をb→、c→で表せ。


この問題、途中までとけましたけど、最後がとけませんでした。。

BD:DC=K:(1-K)とおき、
AD⊥BCからKの値を求めるやりかたで
AD=(1-K)√3+K√2 OR AD=(1-K)b+kc
BC=CA+AB⇒-√2+√3 OR -c+b

AD・BC, {(1-K)b+kc}(-c+b) ( ⊥なので)
{(1-k)b・-c+(1-k)b・b+kc・-c+kc・b}

b・b=|b|^2=3
c・c=2
b・c=|b||c|cosA=1 以上より

AD=(1/3)b→+(2/3)c→ となりました。

この後が求められません。
このあとは、AHを求めないとだめなのですけど、

ヒントとしては、
AH→=lAD→とおき、BH→⊥AC→からlを求める。。って書いてあるのですけど、良く解りません。
BHは、BH=HA+ABとするのですか?
ACは=Cもしくは、√2をつかうのですか?
これらより、式をつくるのでしょうか?
lを求めるって部分もちょっと良くわかりませんでしたので、式も造る事ができませんでした。

どなたか教えてください>_<

AB=√3、AC=√2、CosA=1/√6のような△ABCにおいて、AB→=b→、AC→=c→とし、頂点Aから対辺BCに引いた垂線をADとするとき、AD→をb→、c→で表せ。 また垂心をHとして、AH→をb→、c→で表せ。


この問題、途中までとけましたけど、最後がとけませんでした。。

BD:DC=K:(1-K)とおき、
AD⊥BCからKの値を求めるやりかたで
AD=(1-K)√3+K√2 OR AD=(1-K)b+kc
BC=CA+AB⇒-√2+√3 OR -c+b

AD・BC, {(1-K)b+kc}(-c+b) ( ⊥なので)
{(1-k)b・-c+(1-k)b・b+kc・-c+kc...続きを読む

Aベストアンサー

あなたに回答してもポイント発行するだけで、わかったとか、わからんとか、何も反応がなくておもしろくないです。だから、もう回答するのやめてしまいました。他の人はどう思っているか知りませんが。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報