この数学記号を使ってみたいのですが、意味がよく分かりません。小学6年生にも分かる説明で教えてください。

A 回答 (6件)

小学生にしては難しい記号を知ってますね。

アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけですが、引数が複数ある関数もあります。

引数が複数の関数で互いに独立している場合、その内1つの引数にだけ注目して微分することができます。これを偏微分と言います。

中学校の数学では統計学という分野が出てくるのですが、その中に正規分布関数というものがあります。

f(x)=1/σ√(2π) exp(-(x-μ/σ)^2/2)

という複雑な式なのですが、これを証明するためには偏微分が必要なのです。

高校でも学ばない理論を持ち出すわけにはいかないので、この関数は無証明で覚えなさいと言われます。

あなたが偏微分に興味があるなら、最もとっかかりやすいのがこの正規分布関数ではないかと思います。Web サイトを検索するといろいろ紹介されているので勉強してください。
    • good
    • 2
この回答へのお礼

詳しい説明ありがとうございます!
もっと勉強をがんばらないと!!

お礼日時:2017/06/15 17:19

漫画でよく、耳の中に書かれる文字です。

のび太君の耳を見てください。

http://fujiko-museum.com/administrator/wp-conten …
    • good
    • 1

釣りでしょうが、「小学6年生の知能では、理解不能です」とだけ言っておきましょう。

    • good
    • 1
この回答へのお礼

たしかに。(笑)
WIKIをみても理解不能でした。

お礼日時:2017/06/15 17:21

ギリシャ文字のシータの小文字でげすな。

    • good
    • 2

高度な数学概念ですよ。


デルタ。
限りなく0に近いけれど決して0では無く、極めて小さいという意味。
小学6年は、まだ算数の世界だから、考えない方が良いですよ。
0は無限個足しても0。
∂は無限個足すと、条件によって色々な値へ収束する。

この性質を使って円の面積とか、瞬間速度を求める、微分・積分が明らかになりました。
(円の面積や円周の長さは∂の概念を使って公式が導かれた)
    • good
    • 1

---------------------------------------------------


https://ja.wikipedia.org/wiki/%E2%88%82
---------------------------------------------------
↑辺りを見てみると良いと思う・・!
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Q数学1の三角比について質問です。sinの値が90度を超えると、直角三角形は作れないと思うのですが

数学1の三角比について質問です。

sinの値が90度を超えると、直角三角形は作れないと思うのですが、

例えば、sin135度=sin45度となるようです。

sin135度ということは、三角形の一つの角の大きさが、135度ということですが、

135度という角度を含む三角形は、そもそも直角三角形にはならないので、なぜsin45度と同じになるのか、理解できません。

Aベストアンサー

解り易い様に直角3角形を使うのだけれど、実際には直角三角形では無く、角度に対して決めたもの。

下の図の左で、赤(y)/青(斜辺)をsinθ、緑(x)/青(斜辺)をcosθと決めた。
それを解り易く直角3角形で置き換えると、右の図。

青(斜辺)は絶対値で正。x,yは正負の符号が付く。
130度の場合はy/青(斜辺)でyは正。
45の場合もy/青(斜辺)でyは正。

どちらも、y/青(斜辺)は同じ値になるでしょう?

Q弧度法で弧の長さと面積をだす公式が腑に落ちません

弧度法で弧の長さと面積をだす公式が腑に落ちません

弧の長さは、半径 x 中心角(ラジアン)

面積は、半径 x この長さ x 1/2


とのことですが、なぜ上記の公式で、弧の長さと、面積を求めることができるのでしょうか?

Aベストアンサー

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角の割合を掛け合わせたものだとわかります。

よって、このようにすると
「直径 × 円周率」が円の円周の長さ、
「円周率 × 半径 × 半径」が円の面積であることはすでに習っているはずなので
計算式上で理解しやすいはずです。


さて、ではなぜラジアンを使うのでしょうかという問いですが、
実は半径1の円において、円周の長さが2π(ラジアン)であることに関係しています。
半径1の円の弧の長さ
=円周の長さ × 中心角の割合 =2π × 中心角の割合
=中心角(ラジアン)
ここから、弧の長さ=半径×中心角(ラジアン)が導かれるのです。
きちんと理解ができていれば、ラジアンを使ったほうが簡単だったというだけですね。


扇形の面積に関しては、計算式から求めても構わないのですが、
直感的には、No.4のかたの言うように、三角形に細分化したものを考えます。

同じ扇形を二つ用意して、これを小さな扇形にカットしたものを想像してください。
そしてそれを交互に組み合わせていきます。
 ~~~~
/    /
~~~~
カットの仕方が大きいと上の図のようになりますが、
より微細にカットしたものを使うことによって、
| ̄ ̄ ̄|
|   |
  ̄ ̄ ̄
というように、だんだん長方形に近づいていきます。
このとき、底辺が弧の長さ、高さが半径に近づいていきます。
こうすることによって、
扇形の面積(の2個分)は弧の長さ × 半径 と表されるのです。
すなわち、
扇形の面積=弧の長さ × 半径 ÷2
という式が導かれるわけです。

この作業をしているのが積分なのですが、それは割愛します。

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角...続きを読む

Q高校の数学の複素数平面って存在価値あるのですか? 別に習わなくても良くね?

高校の数学の複素数平面って存在価値あるのですか?
別に習わなくても良くね?

Aベストアンサー

複素数平面以外は、存在価値を見て解ているのですか?

三角関数、指数関数、対数なんかも同じでしょ。
ましてや、微分、積分なんて、いつ使う?

何にもしないあなたには、宝の持ちぐされです。

Qlim[θ→0]θ/tanθ=1の証明が分かりません。 回答の程宜しくお願い致します。

lim[θ→0]θ/tanθ=1の証明が分かりません。
回答の程宜しくお願い致します。

Aベストアンサー

いろいろな考え方で、解いてみます。(ちょっと無理があるかも?)
 基礎知識は ・中間値の定理
       ・tanΘが連続で(tanΘ)'=1/(CosΘ)^2 となること。かな。

 lim[θ→0]θ/tanθ において、θ→0の状態でΘ≠0だから分母分子をΘで割って
 lim[θ→0]θ/tanθ=lim[θ→0]1/(tanθ/Θ) の繁分数にすると分子は常に1だから分母の(tanΘ)/Θ に注目して
 分母: lim[θ→0]tanθ/Θ を解くf(Θ)=tanΘとする。f(Θ)は連続で0近傍で微分可能
   中間値の定理より
          (f(Θ)-f(0))/(Θ-0) とすれば(f(Θ)-f(0))/(Θ-0)=f'(α)となるαが存在する。(ただし0<α<Θ)
この状態でθ→0とするからα→0となるのでlim[θ→0]tanθ/Θ=lim[θ→0](f(Θ)-f(0))/(Θ-0)
            =lim[θ→0]f'(α)=lim[α→0]f'(α)=lim[α→0]{1/(Cosα)^2}=1
よって分母も1だからlim[θ→0]θ/tanθ=1が言える。

いろいろな考え方で、解いてみます。(ちょっと無理があるかも?)
 基礎知識は ・中間値の定理
       ・tanΘが連続で(tanΘ)'=1/(CosΘ)^2 となること。かな。

 lim[θ→0]θ/tanθ において、θ→0の状態でΘ≠0だから分母分子をΘで割って
 lim[θ→0]θ/tanθ=lim[θ→0]1/(tanθ/Θ) の繁分数にすると分子は常に1だから分母の(tanΘ)/Θ に注目して
 分母: lim[θ→0]tanθ/Θ を解くf(Θ)=tanΘとする。f(Θ)は連続で0近傍で微分可能
   中間値の定理より
          (f(Θ)-f(0))/(Θ-0) とすれば(f(Θ)-f(0...続きを読む

Q算数と数学の違いって何ですか?

算数と数学の違いって何ですか?

Aベストアンサー

算数は数と数を取り扱って計算することです。微分積分や三角関数等も含め、単に数式を扱う学問です。小学校では四則計算に特化した数学を教えます。

数学は、その数がどの様な意味を持つか、あるいは世の中の現象を数を使ってどう表現するかと言う学問です。なので、小学校の鶴亀算等の文章問題は、実は数学です。

Qなぜ1m+1m=2mなのですか? そう定義したからですか?

なぜ1m+1m=2mなのですか?
そう定義したからですか?

Aベストアンサー

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4kmで出発した弟を、お兄さんが時速16kmの自転車で追いかけるときの追いつく時刻についても、単純な引き算・割り算「ex4×3÷(16-4)」だけでなく、観測者がだれなのかといった視点も含め一般相対論による修正が厳密には必要でしょう。


付言するならば、「算数」という教科は、この世の「自然に受け入れられている身の回りの法則・原理について学ぶ(つべこべ言わずに覚える)教科」であり、「数学」はこの世の法則にとどまらず、厳密な意味での「数の体系」についても学ぶ(厳密性を追求し、証明を求める)教科です。

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4k...続きを読む

Q円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?

円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?

例えば
有理数 1/7は0.142857 142857...と無限に循環しますが
無理数がたまたま数回だけループして0.142857 142857 3195634918...などとなる可能性もあります
だから
円周率でも何兆、何京桁と調べていけばこういうループは見つかる可能性がありますか?

Aベストアンサー

n個の数の並びが連続して現れることがあるか、という問題であれば、「nがそれほど大きくなければ、多分あるだろう」という気がします。ただ、その場合のnの上限は何か? とか、n→∞のときにもそうなるのか?ということだと、「不明」としか言いようがないでしょう。

Q①整数とは ②(整数)+(整数)=(整数) ~数学・算数が苦手な生徒に説明する場合~

①整数とは何か。

②(整数)+(整数)=(整数)、(整数)-(整数)=(整数)

→①と②を「数学・算数が苦手な生徒に」わかりやすく説明するにはどうしたらいいのでしょうか?

☆宜しくお願い致します☆

Aベストアンサー

整数とは、0に1ずつ足したり引いたりしてできる数の集まり。0を含む。
整数+整数が整数になるのは、
例えば、0に3をたすということは、
0+1+1+1になるから、必ず整数になる。
整数-整数も0に3を引くとなると
0-1-1-1になるから必ず整数になる。

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報