ID登録せずに、無料で質問できる♪ 教えて!gooアプリ>>

y=2px+p^2 と3xp^2+2p^3=C からPを消去して、x,y,cの方程式を導く。
なるべく根号を用いないで処理したいのですが、良い方法がありましたら教えてください。

質問者からの補足コメント

  • 基本的な方法ですね。pについて解いたとき複号がつくので、代入後が少し面倒になるように思われます。

    No.3の回答に寄せられた補足コメントです。 補足日時:2017/06/15 19:48
  • その通りです。手順はどうでしょうか?

    No.4の回答に寄せられた補足コメントです。 補足日時:2017/06/15 19:52

A 回答 (6件)

せっかくだから計算してみましょうか。

式をいじれば根号は消えますね。

y=2px+p^2    ①
3xp^2+2p^3=C  ②

①より、p^2=-2px+yなので、これを②に代入して、
3x(-2px+y)+2p(-2px+y)=C
-6px^2+3xy-4p^2x+2py=C
-6px^2+3xy-4(-2px+y)x+2py=C
∴2p(x^2+y)-xy=C
よって、p=(xy+C)/2(x^2+y)

①より、pの2次方程式を解いて、p=-x±√(x^2+y)なので、
-x±√(x^2+y)=(xy+C)/2(x^2+y)
±√(x^2+y)=x+(xy+C)/2(x^2+y)

両辺を2乗して、分母を払い、整理すると(この過程は単純計算なので省略)、

-4Cx^3+3x^2y^2-6Cxy+4y^3-C^2=0
    • good
    • 0

#3のものです。


補足に対して。
>基本的な方法ですね。pについて解いたとき複号がつくので、代入後が少し面倒になるように思われます。
自分で計算しましたか?
復号?そんなものつかないですよ。
pについてとくのは二つの式を利用してpの1次式まで落とした状態からの変形です。1次式を変形して復号がつくとはどういうことですか?
人に質問するなら丸投げせずちゃんと書いてあるとおり計算しなさい。
    • good
    • 0
この回答へのお礼

失礼いたしました。割り算を途中でやめておりました。余りが(2y+2x^2)p-xy なので、
(2y+2x^2)p-xy=c からp=(xy+c)/(2x^2+2y) を代入すれば解決ですね。

お礼日時:2017/06/15 22:48

-c^2-4 c x^3-6 c x y+3 x^2 y^2+4 y^3=0

この回答への補足あり
    • good
    • 0

1個目の式を変形してp^2+2px-y=0とする。


2個目の式の左辺をp^2+2px-yで割り、その余り(pについての1次式)を求める。

上の割り算の余り=c
となりますから、これをpについて解く。
この式を1個目の式に代入するとpが消去されます。
この回答への補足あり
    • good
    • 0

左の式にはp²を含み、右はp³を含みます。


2乗をn乗(n=整数)しても3乗を作れません。
∴2乗を分数乗するしか無く√(1/2乗)が出てきます。
    • good
    • 0

計算しましたが、無理ですね。

根号は残ります。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q弧度法で弧の長さと面積をだす公式が腑に落ちません

弧度法で弧の長さと面積をだす公式が腑に落ちません

弧の長さは、半径 x 中心角(ラジアン)

面積は、半径 x この長さ x 1/2


とのことですが、なぜ上記の公式で、弧の長さと、面積を求めることができるのでしょうか?

Aベストアンサー

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角の割合を掛け合わせたものだとわかります。

よって、このようにすると
「直径 × 円周率」が円の円周の長さ、
「円周率 × 半径 × 半径」が円の面積であることはすでに習っているはずなので
計算式上で理解しやすいはずです。


さて、ではなぜラジアンを使うのでしょうかという問いですが、
実は半径1の円において、円周の長さが2π(ラジアン)であることに関係しています。
半径1の円の弧の長さ
=円周の長さ × 中心角の割合 =2π × 中心角の割合
=中心角(ラジアン)
ここから、弧の長さ=半径×中心角(ラジアン)が導かれるのです。
きちんと理解ができていれば、ラジアンを使ったほうが簡単だったというだけですね。


扇形の面積に関しては、計算式から求めても構わないのですが、
直感的には、No.4のかたの言うように、三角形に細分化したものを考えます。

同じ扇形を二つ用意して、これを小さな扇形にカットしたものを想像してください。
そしてそれを交互に組み合わせていきます。
 ~~~~
/    /
~~~~
カットの仕方が大きいと上の図のようになりますが、
より微細にカットしたものを使うことによって、
| ̄ ̄ ̄|
|   |
  ̄ ̄ ̄
というように、だんだん長方形に近づいていきます。
このとき、底辺が弧の長さ、高さが半径に近づいていきます。
こうすることによって、
扇形の面積(の2個分)は弧の長さ × 半径 と表されるのです。
すなわち、
扇形の面積=弧の長さ × 半径 ÷2
という式が導かれるわけです。

この作業をしているのが積分なのですが、それは割愛します。

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角...続きを読む

Q高校の数学の複素数平面って存在価値あるのですか? 別に習わなくても良くね?

高校の数学の複素数平面って存在価値あるのですか?
別に習わなくても良くね?

Aベストアンサー

複素数平面以外は、存在価値を見て解ているのですか?

三角関数、指数関数、対数なんかも同じでしょ。
ましてや、微分、積分なんて、いつ使う?

何にもしないあなたには、宝の持ちぐされです。

Q数学の直しをしていたのですが、この問題の証明がどうしてもできません。誰か分かる方がいらっしゃったら教

数学の直しをしていたのですが、この問題の証明がどうしてもできません。誰か分かる方がいらっしゃったら教えていただけませんか?

Aベストアンサー

一般項(k≧1)は
 a(k) = 2(1 + 2 + ・・・ + k) = k(k + 1) = k^2 + k
ですよね。(ここでも下記の①を使いますね)

Sn は、これを k=1 ~ n で足し合わせたものなので
 Σ(k=1~n)k^2 = (1/6)n(n + 1)(2n + 1)   ←これは覚えておいた方がよいかも。
 Σ(k=1~n)k = (1/2)n(n + 1)   ①      ←これは必須でしょう。
より
 Sn = (1/6)n(n + 1)(2n + 1) + (1/2)n(n + 1)
   = (1/6)n(n + 1)[ (2n + 1) + 3 ]
   = (1/6)n(n + 1)(2n + 4)
   = (1/3)n(n + 1)(n + 2)

Q放物線と円が接する問題について

リンクの画像の問題で、放物線と円が二点で接する場合に判別式D=0となる理由がよくわかりません。一点で接する場合もyの値は一つなのでD=0となるのではないんでしょうか?
私の考えのどこが間違ってるのか教えていただけると幸いです。
http://i.imgur.com/8a0wbf9.jpg

Aベストアンサー

【 接する 】ということを、少し変わった角度から考えて・・・


『 2個の交点が近づいて、一致したとき接点になり、接する 』
  ~~~~~~~~~~

2次方程式の解は、x軸との交点のx座標の値で、
2つの解をα、βとすると、2次方程式は、
(x-α)(x-β)=0
で表され、グラフ(ア)のようにx軸と異なる2点で交わる。


(ア)のグラフを上方に平行移動させるとαとβが近づいていき、
しまいには、αとβが一致して、
グラフ(イ)のように、x軸と接する。

このとき、α=βとなり、
(x-α)^2=0
となって重解になる。
つまり、判別式D=0

問題の解答は、
y=x^2+a と x^2+y^2=9 から x を消去して
(y-a)+y^2=9
y^2+y-a-9=0
と、yの2次方程式になっています。

[1] 放物線と円が2点で接するとき
グラフ(ウ)のように2点で交わり、
放物線を下方に平行移動させると2個の交点が近づいていき、
ついには、2個の交点が一致して
グラフ(エ)のように円と接する。

yの2次方程式だから、yの値が2個(α、β)あり、
(グラフはx軸に関して対称だから、x>0で考える)
グラフを平行移動させることにより
α=βとなり、円と接することになる。

(添付写真があるので、次に続く)

【 接する 】ということを、少し変わった角度から考えて・・・


『 2個の交点が近づいて、一致したとき接点になり、接する 』
  ~~~~~~~~~~

2次方程式の解は、x軸との交点のx座標の値で、
2つの解をα、βとすると、2次方程式は、
(x-α)(x-β)=0
で表され、グラフ(ア)のようにx軸と異なる2点で交わる。


(ア)のグラフを上方に平行移動させるとαとβが近づいていき、
しまいには、αとβが一致して、
グラフ(イ)のように、x軸と接する。

このとき、α=βとなり、
(x-α)^2=0
...続きを読む

Q「∂」について

この数学記号を使ってみたいのですが、意味がよく分かりません。小学6年生にも分かる説明で教えてください。

Aベストアンサー

小学生にしては難しい記号を知ってますね。アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけですが、引数が複数ある関数もあります。

引数が複数の関数で互いに独立している場合、その内1つの引数にだけ注目して微分することができます。これを偏微分と言います。

中学校の数学では統計学という分野が出てくるのですが、その中に正規分布関数というものがあります。

f(x)=1/σ√(2π) exp(-(x-μ/σ)^2/2)

という複雑な式なのですが、これを証明するためには偏微分が必要なのです。

高校でも学ばない理論を持ち出すわけにはいかないので、この関数は無証明で覚えなさいと言われます。

あなたが偏微分に興味があるなら、最もとっかかりやすいのがこの正規分布関数ではないかと思います。Web サイトを検索するといろいろ紹介されているので勉強してください。

小学生にしては難しい記号を知ってますね。アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけ...続きを読む

Q誰かこの数学の問題、わかる方いらっしゃいませんか…? 全く理解出来なくて…((

誰かこの数学の問題、わかる方いらっしゃいませんか…?
全く理解出来なくて…((

Aベストアンサー

(1) x-3y=4
(2) a-3b=5
(3) x-y=-4
(4) 3000-7a=-b

Q高校数学整数問題 至急

xの2次方程式 x^2-mnx+m+n=0 (m,nは自然数) で2つの解がともに整数となるのはいくつあるか

Aベストアンサー

整数解をx=a,bとする。但し、a≦bと仮定。

解と係数の関係から
a+b=mn …①
ab=m+n …②

m,nが自然数なので
ab≧2 …③

ここでトリッキーだけど、(m-1)(n-1)=mn-(m+n)+1=a+b-ab+1
=-(a-1)(b-1)+2 …④

m,nは自然数なので、m-1≧0かつn-1≧0。

∴0≦(m-1)(n-1)=-(a-1)(b-1)+2

∴(a-1)(b-1)≦2 …⑤

③かつ⑤を解く。

1.a>0(の整数)の場合
a≧1なので、③よりb≧2/a 。
従って、⑤を満たす(a,b)は下記i~iiiのいずれか。

i (a=1)かつ(b≧2)
ii (a=2)かつ(3≧b≧1)
iii (a=3)かつ(2≧b≧1)

iの場合、④より(m-1)(n-1)=2となるので、
(m,n)=(3,2)(2,3)となるけど、①②より
1+b=mn=6
b=m+n=5
となるので、b=5に決まり。

iiの場合、
a≦bを満たす解は(a,b)=(2,2)(2,3)。
(a,b)=(2,2)の時、④より(m-1)(n-1)=1となるので、
(m,n)=(2,2)。

一方、(a,b)=(2,3)の時、④より(m-1)(n-1)=0となるので
m=1またはn=1。
また、①②より
5=mn
6=m+n
なので、(m,n)=(5,1)(1,5)。

iiiの場合、
a≦bを満たす解は無し。

2.a=0の場合
③を満たさないので不適。

3.a<0(の整数)の場合
a≦-1(a-1≦-2)なので、③よりb≦2/a <0。
∴b-1 <-1。
∴(a-1)(b-1)>2
これは⑤を満たさないので不適。

以上より、
(m,n)=(5,1)(3,2)(2,2)(2,3)(1,5)

整数解をx=a,bとする。但し、a≦bと仮定。

解と係数の関係から
a+b=mn …①
ab=m+n …②

m,nが自然数なので
ab≧2 …③

ここでトリッキーだけど、(m-1)(n-1)=mn-(m+n)+1=a+b-ab+1
=-(a-1)(b-1)+2 …④

m,nは自然数なので、m-1≧0かつn-1≧0。

∴0≦(m-1)(n-1)=-(a-1)(b-1)+2

∴(a-1)(b-1)≦2 …⑤

③かつ⑤を解く。

1.a>0(の整数)の場合
a≧1なので、③よりb≧2/a 。
従って、⑤を満たす(a,b)は下記i~iiiのいずれか。

i (a=1)かつ(b≧2)
ii (a=2)かつ(3≧b≧1)
iii (a=3)かつ(2≧b≧1)

iの場合、④より(m-1)(n-1)=2となるので...続きを読む

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Qこの問題教えて下さい!

この問題教えて下さい!

Aベストアンサー

問題を教えろ だと 申すか。よかろう 教えて進ぜよう。
 そもそも モニター画面の文字が歪んでいるのか、我が屋のスクリーンが灰色がかって見えないのかわからぬことが問題だ。
 しかし、その問題は、この数学カテゴリー外の問題になる。
 以上 
 さて回答に入ります。
 a[1]が0と1の間にありますから、仮にa[1]=½をとりましょう
 n=1として漸化式に代入すると a[2]=√(½+2-1)=√(3/2)=(√3)/(√2)=(√6)/2>(√4)/2=2/2=1
 となるからa[2]>1が言える。 
 これは (1)の命題の反例になる よって(1)が問題にならない。 つまり 間違ってるということです。
 面白くない問題ですね。
 以上 (1)の解答にお答えしない怪答でした。

Qlim[θ→0]θ/tanθ=1の証明が分かりません。 回答の程宜しくお願い致します。

lim[θ→0]θ/tanθ=1の証明が分かりません。
回答の程宜しくお願い致します。

Aベストアンサー

いろいろな考え方で、解いてみます。(ちょっと無理があるかも?)
 基礎知識は ・中間値の定理
       ・tanΘが連続で(tanΘ)'=1/(CosΘ)^2 となること。かな。

 lim[θ→0]θ/tanθ において、θ→0の状態でΘ≠0だから分母分子をΘで割って
 lim[θ→0]θ/tanθ=lim[θ→0]1/(tanθ/Θ) の繁分数にすると分子は常に1だから分母の(tanΘ)/Θ に注目して
 分母: lim[θ→0]tanθ/Θ を解くf(Θ)=tanΘとする。f(Θ)は連続で0近傍で微分可能
   中間値の定理より
          (f(Θ)-f(0))/(Θ-0) とすれば(f(Θ)-f(0))/(Θ-0)=f'(α)となるαが存在する。(ただし0<α<Θ)
この状態でθ→0とするからα→0となるのでlim[θ→0]tanθ/Θ=lim[θ→0](f(Θ)-f(0))/(Θ-0)
            =lim[θ→0]f'(α)=lim[α→0]f'(α)=lim[α→0]{1/(Cosα)^2}=1
よって分母も1だからlim[θ→0]θ/tanθ=1が言える。

いろいろな考え方で、解いてみます。(ちょっと無理があるかも?)
 基礎知識は ・中間値の定理
       ・tanΘが連続で(tanΘ)'=1/(CosΘ)^2 となること。かな。

 lim[θ→0]θ/tanθ において、θ→0の状態でΘ≠0だから分母分子をΘで割って
 lim[θ→0]θ/tanθ=lim[θ→0]1/(tanθ/Θ) の繁分数にすると分子は常に1だから分母の(tanΘ)/Θ に注目して
 分母: lim[θ→0]tanθ/Θ を解くf(Θ)=tanΘとする。f(Θ)は連続で0近傍で微分可能
   中間値の定理より
          (f(Θ)-f(0))/(Θ-0) とすれば(f(Θ)-f(0...続きを読む


人気Q&Aランキング