アレルギー対策、自宅でできる効果的な方法とは?

逆距離荷重法を用いてデータの補間を行いたいのですが、データが以下のようにエクセル(csv形式)である場合、どのように計算すればよいのでしょうか?

例)列の左からx座標,y座標,値
x座標 y座標 値
10   15  30
12   52  40
59   79  5
15   9    90

上記のように座標が飛び飛びのデータが1000個程あり、全セル(x,y)=(0,0)~(99,99)の10000セル分のデータを取得したいのですが、抜けのある部分のデータを逆距離荷重法ですべて求めるにはどうすればよいでしょうか?

よろしくお願いいたします。

A 回答 (1件)

データがたった1000点しかなく、欲しいのがわずか10000点。

だったら、素直にデータを全部使えばよろしいでしょう。すなわち、k番目のデータを(x[k], y[k], v[k])、補間で値を計算する点の位置を(x,y)、計算される値をvとして
  D(x,y,x[k], y[k]) = 「(x,y)と(x[k],y[k])の距離」
を定義すれば、
  S = ∑{k=1〜1000} (1/D(x,y,x[k],y[k]))
  v = (1/S)∑{k=1〜1000} (v[k]/D(x,y,x[k],y[k]))
を計算するだけ。マクロを書けばいいんです。

 なお「(x,y)と(x[k], y[k])の距離」はいろんな種類の「距離」がありうるわけで、たとえばユークリッド距離なら
  D(x,y,x[k],y[k]) = √((x-x[k])^2+ (y-y[k])^2)
だし、マンハッタン距離なら
  D(x,y,x[k],y[k]) = |x-x[k]|+ |y-y[k]|
ですね。

 ただし、これだけだと (x,y)=(x[k],y[k])の場合にはD(x,y,x[k],y[k])=0になって、エラー(0による除算)が起こる。なので
  もしD(x,y,x[k],y[k])=0 なら v = v[k]
という分岐処理を入れておく必要があるな。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

近傍のサンプル数をどう数えようかと悩んでおり全部使うという発想に至りませんでしたが、教えて頂いた方法で無事解決しました!

お礼日時:2017/06/20 20:16

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q「∂」について

この数学記号を使ってみたいのですが、意味がよく分かりません。小学6年生にも分かる説明で教えてください。

Aベストアンサー

小学生にしては難しい記号を知ってますね。アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけですが、引数が複数ある関数もあります。

引数が複数の関数で互いに独立している場合、その内1つの引数にだけ注目して微分することができます。これを偏微分と言います。

中学校の数学では統計学という分野が出てくるのですが、その中に正規分布関数というものがあります。

f(x)=1/σ√(2π) exp(-(x-μ/σ)^2/2)

という複雑な式なのですが、これを証明するためには偏微分が必要なのです。

高校でも学ばない理論を持ち出すわけにはいかないので、この関数は無証明で覚えなさいと言われます。

あなたが偏微分に興味があるなら、最もとっかかりやすいのがこの正規分布関数ではないかと思います。Web サイトを検索するといろいろ紹介されているので勉強してください。

小学生にしては難しい記号を知ってますね。アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけ...続きを読む

Qなぜ1m+1m=2mなのですか? そう定義したからですか?

なぜ1m+1m=2mなのですか?
そう定義したからですか?

Aベストアンサー

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4kmで出発した弟を、お兄さんが時速16kmの自転車で追いかけるときの追いつく時刻についても、単純な引き算・割り算「ex4×3÷(16-4)」だけでなく、観測者がだれなのかといった視点も含め一般相対論による修正が厳密には必要でしょう。


付言するならば、「算数」という教科は、この世の「自然に受け入れられている身の回りの法則・原理について学ぶ(つべこべ言わずに覚える)教科」であり、「数学」はこの世の法則にとどまらず、厳密な意味での「数の体系」についても学ぶ(厳密性を追求し、証明を求める)教科です。

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4k...続きを読む

Q非線形の偏微分方程式

流体力学のナヴィエ・ストークスの方程式、もしくはそれ以外の
非線形偏微分方程式は、解析的に絶対解けないのですか?
それとも解くのが非常に難しいのですか?

上記NS方程式はクレイの未解決問題としてあげられていますが、
解析的に解けるかもしれないということなのでしょうか。

微分方程式の勉強が不十分なので、恐縮ですが、ご教授頂きたく。
よろしくお願い致します。

Aベストアンサー

質問されているテーマだけでwikipediaに一つ記事ができているくらいの話なので、詳細はそちらに任せるとして。
https://ja.wikipedia.org/wiki/ナビエ–ストークス方程式の解の存在と滑らかさ

私自身の理解は「解けるかもしれないし解けないかもしれない、現在わからない」です。
ゆえに未解決問題として挙げられている現状なのかと。
NS方程式自体にいくつか解が存在していることは判明していて、ただし何らかの前提や特殊な条件をつけた場合かと思います。

Q1階微分作用素の問題(逆作用素K=L^{-1}が対称作用素にならない場合があるかどうか)

http://www.math.tsukuba.ac.jp/~isozakih/lecture/Funct.Anal.2.pdf
の「1.8.1 有界区間のとき」なんですが
isozakih先生に連絡の取りようがないので、ここでお訊きします。

1階微分作用素をLとして、この逆作用素K=L^{-1}は、ある場合 対称作用素にならない
と思うのですが、それで合っているでしょうか?
証明(概略)
Lは、対称作用素で、1対1なので、定義域D(K)=R(L) (Rは値域の意)

K について、補題8.5(1)を援用すると、
部分積分の左辺は  (Kf, v) 、右辺の積分は  (f, Kv)
なので、
(Kf, v)=i f(x)\overline{v(x)}|_0^X + (f, Kv)
これが、有界区間の終わりX がどんな値でも 対称作用素の要件 (Kf, v)=(f, Kv)  になるためには、
f(0) = 0 、 f(X) = 0
である必要がある。
もし 「補題8.1」のu’=f が、x=0とx=2π(=有界区間の終わりX)で≠0ならば
Kは、対称作用素でない
//
ついでに、最終的に求めたいことは、
L が、自己共役なのに Kが、対称作用素でないならば、
「定理3.2  Aが自己共役で1対1なら A^{-1}も自己共役である」
に反しますから、
「補題8.1」のu’=f が、x=0とx=2π(有界区間の終わりX)では0である必要がある
ということです。

http://www.math.tsukuba.ac.jp/~isozakih/lecture/Funct.Anal.2.pdf
の「1.8.1 有界区間のとき」なんですが
isozakih先生に連絡の取りようがないので、ここでお訊きします。

1階微分作用素をLとして、この逆作用素K=L^{-1}は、ある場合 対称作用素にならない
と思うのですが、それで合っているでしょうか?
証明(概略)
Lは、対称作用素で、1対1なので、定義域D(K)=R(L) (Rは値域の意)

K について、補題8.5(1)を援用すると、
部分積分の左辺は  (Kf, v) 、右辺の積分は  (f, Kv)
なので、
...続きを読む

Aベストアンサー

>L=-id/dx であるなら、その固有関数は Aexp(ix)+Bexp(-ix)です。
一般的には、定数λを用いて、Lu=λuとなるようなD(L)の元をLの(固有値λの)固有関数と言います。
Aexp(ix)+Bexp(-ix)は、A,Bの一方がゼロである場合を除けばこの条件を満たしませんので一般的な意味ではLの固有関数にはなりません。そもそもD(L)の元ですらありません。

貴方がどういう意味で「固有関数」と言っているのかさっぱり分かりませんが、
おそらく、(0,X)という区間で考えている場合であっても、Aexp(i2πx/X)+Bexp(-i2πx/X)が貴方のいう「固有関数」になっているのではありませんか?



>尚、H^1(I)の定義は、1次元ヒルベルト空間の中のベクトル(関数)で、定義域が0~2πのもの
>と思っています。
ヒルベルト空間の次元と言えば、普通はベクトル空間としての次元(≒独立なベクトルの個数)を指します。
従って、「1次元ヒルベルト空間」は、ただの複素数と同相なものを指す事になりますが、そういう系を考えている訳ではない事は明らかでしょう。

最低でも微分可能である事くらいは定義に含まれているはずですよ。(そうでないのならLu=-iu'という式では、微分不可能な関数に対して、Luが定義できていませんから)

>L=-id/dx であるなら、その固有関数は Aexp(ix)+Bexp(-ix)です。
一般的には、定数λを用いて、Lu=λuとなるようなD(L)の元をLの(固有値λの)固有関数と言います。
Aexp(ix)+Bexp(-ix)は、A,Bの一方がゼロである場合を除けばこの条件を満たしませんので一般的な意味ではLの固有関数にはなりません。そもそもD(L)の元ですらありません。

貴方がどういう意味で「固有関数」と言っているのかさっぱり分かりませんが、
おそらく、(0,X)という区間で考えている場合であっても、Aexp(i2πx/X)+Bexp(-i2πx/X)が...続きを読む

Q3^m - 1 (mが奇数) を素因数分解した時の2の指数は何かという問題について 回答はもっと上手

3^m - 1 (mが奇数) を素因数分解した時の2の指数は何かという問題について

回答はもっと上手いやり方で9÷8=1…1 を使ってやっていましたが思いつかなかったので数学的帰納法でやりました
果たして証明できているか不安です
ご確認お願いします

①m=1のとき 3^1 -1 =2
より素因数分解した時の2の指数は1である

②m=kのとき(kは奇数)
3^k -1= 2×(奇数A) とすると
3^(k+2) -1= [2×(奇数A) +1]×9 -1
=2×[ (奇数A)×9 -8]

となり[]内の値は奇数であるからm=k+2の時も素因数分解した時の2の指数は1である

①②より全ての奇数の自然数mについて3^m -1を素因数分解した時の2の指数は1である

Aベストアンサー

x^n -1=(x-1){x^(n-1) +x^(n-2) +… +x^2 +x +1}
という展開式に当てはめれば、

3^m -1
=(3-1){3^(m-1) +3^(m-2) +… +3^2 +3 +1}
=2{3^(m-1) +3^(m-2) +… +3^2 +3 +1}
とできる。

3の累乗は常に奇数であり、
3^0 の項から 3^(m-1) の項までm個(奇数個)あるので
{}内は奇数を奇数個足し合わせになることから、奇数。

よって、mが奇数のとき 3^m -1 は、2×奇数 で表される。
したがって、2の指数は1だといえる。


----------
奇数 +偶数 =奇数 ということを
きちんと説明できていれば、証明できていると言えるでしょうね。

Qこれって数学的何ですか?

数学の自由研究について調べるうちにこんなものを発見しましたhttp://buzz-plus.com/article/2015/01/12/janken/

数学的ってなんか数字を使ってるイメージなんですけど、これはデータの読み取りですか?

数学が好きな方、詳しい方は僕の言ってる意味が分かんないと思いますが、是非回答をお願いします。

僕は数学が苦手です。

Aベストアンサー

ゲーム理論のナッシュ均衡というものがあります。

数学ですので、数式を用いて説明すると以下の通りになります。
標準型ゲーム G = (N, S, u) (N はプレーヤーの集合、S = prod_{i in N} S_i は戦略の組の集合、u = (u_i)_{i in N} ; (u_i : S rightarrow mathbb{R}) は効用の組)において、戦略の組 s^* in S がナッシュ均衡であるとは、全てのプレーヤー i in N と、全ての s_i in S_i に対して、 u_i(s^*) geq u_i(s_i, s^*_{-i})

どうですか?全く意味がわからないですよね。

具体的な例を出して説明すると少しはましかもしれません。

冷蔵庫を販売している家電量販店AとBがあるとします。
AとBがお互い時期をずらしながら定期的にセールを開催し、冷蔵庫を販売している中、新手の家電量販店Cが出店し、激安価格で冷蔵庫を販売したとします。
AもBも負けじと価格を下げ、これ以上下げれない状態まで、AとBとCが価格を下げきり、しかも、ここで価格を上げると売れなくなってしまうため、損するような状況であれば、これはナッシュ均衡と言えます。利益が出ない状況まで値下げしてしまったけど、もう価格を戻すこともできない、まさに硬直状態ですね。

このようにナッシュ均衡は、身の回りにもたくさんあふれているものですので、そういった事例を探していくのは研究のひとつになるかもしれませんね

ゲーム理論のナッシュ均衡というものがあります。

数学ですので、数式を用いて説明すると以下の通りになります。
標準型ゲーム G = (N, S, u) (N はプレーヤーの集合、S = prod_{i in N} S_i は戦略の組の集合、u = (u_i)_{i in N} ; (u_i : S rightarrow mathbb{R}) は効用の組)において、戦略の組 s^* in S がナッシュ均衡であるとは、全てのプレーヤー i in N と、全ての s_i in S_i に対して、 u_i(s^*) geq u_i(s_i, s^*_{-i})

どうですか?全く意味がわからないですよね。

具体的な例を出して説明する...続きを読む

Q円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?

円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?

例えば
有理数 1/7は0.142857 142857...と無限に循環しますが
無理数がたまたま数回だけループして0.142857 142857 3195634918...などとなる可能性もあります
だから
円周率でも何兆、何京桁と調べていけばこういうループは見つかる可能性がありますか?

Aベストアンサー

n個の数の並びが連続して現れることがあるか、という問題であれば、「nがそれほど大きくなければ、多分あるだろう」という気がします。ただ、その場合のnの上限は何か? とか、n→∞のときにもそうなるのか?ということだと、「不明」としか言いようがないでしょう。

Q開球 凸集合 証明

以下の問題が分かりません。

a∈R^nとする。 B(a,ε)={x∈R^n|d(a,x)<ε}が凸集合であることを示しなさい。

任意のx,y∈B α∈(0,1)に関して(1-α)x+αy∈Bを示せばよいことはわかるのですが、具体的にどのようにすればよいかわかりません。

よろしくお願いします。

Aベストアンサー

うん, それはあさっての方向に突き進むね.

x, y ∈ B といっているんだから ||x-a|| < ε, ||y-a|| < ε はわかってる. ということで, z = (1-α)x + αy に対して z-a を (x-a) と (y-a) を使って書いてみよう. ねんのために書いておくと
(1-α) + α = 1
だね.

Qプラス×マイナスがマイナスになるという証明はできますか?

プラス×マイナスがマイナスになるという証明はできますか?

Aベストアンサー

出来ますよ

5かける2
5が2つイコール10

5かける−2
5が−2つ、、、、
ゴ かける マイナス ふたつ

この時数字ではなく国語になります
5 が マイナス 2つ
この時点で

5 という数字を マイナスして 2つ

もっと細かく言うと
お前を マイナスに して ふたつ

この時点でわかる通り
言葉で強制的にマイナスに持って言ってるんです


もし 数式がと言うのなら 図書館に行くと3秒で諦めつきますよ!

数字とはなにか 数とはなにか から 始まりますからw

Q弧度法で弧の長さと面積をだす公式が腑に落ちません

弧度法で弧の長さと面積をだす公式が腑に落ちません

弧の長さは、半径 x 中心角(ラジアン)

面積は、半径 x この長さ x 1/2


とのことですが、なぜ上記の公式で、弧の長さと、面積を求めることができるのでしょうか?

Aベストアンサー

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角の割合を掛け合わせたものだとわかります。

よって、このようにすると
「直径 × 円周率」が円の円周の長さ、
「円周率 × 半径 × 半径」が円の面積であることはすでに習っているはずなので
計算式上で理解しやすいはずです。


さて、ではなぜラジアンを使うのでしょうかという問いですが、
実は半径1の円において、円周の長さが2π(ラジアン)であることに関係しています。
半径1の円の弧の長さ
=円周の長さ × 中心角の割合 =2π × 中心角の割合
=中心角(ラジアン)
ここから、弧の長さ=半径×中心角(ラジアン)が導かれるのです。
きちんと理解ができていれば、ラジアンを使ったほうが簡単だったというだけですね。


扇形の面積に関しては、計算式から求めても構わないのですが、
直感的には、No.4のかたの言うように、三角形に細分化したものを考えます。

同じ扇形を二つ用意して、これを小さな扇形にカットしたものを想像してください。
そしてそれを交互に組み合わせていきます。
 ~~~~
/    /
~~~~
カットの仕方が大きいと上の図のようになりますが、
より微細にカットしたものを使うことによって、
| ̄ ̄ ̄|
|   |
  ̄ ̄ ̄
というように、だんだん長方形に近づいていきます。
このとき、底辺が弧の長さ、高さが半径に近づいていきます。
こうすることによって、
扇形の面積(の2個分)は弧の長さ × 半径 と表されるのです。
すなわち、
扇形の面積=弧の長さ × 半径 ÷2
という式が導かれるわけです。

この作業をしているのが積分なのですが、それは割愛します。

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角...続きを読む


人気Q&Aランキング

おすすめ情報