親子におすすめの新型プラネタリウムとは?

次の単振り子の問題がよくわかりません。
単振り子について、接線方向の運動式をたて、糸と鉛直線のなす角θが十分に小さい条件の下で、θ、および、質点の速度v、加速度aを時刻tの関数として求めよ。ただし、初期条件としてt=0のとき、θ=θ0(>0)、v=0とせよ。

「次の単振り子の問題がよくわかりません。 」の質問画像

質問者からの補足コメント

  • なす角が十分に小さいということは、0の真下当たりのことですか?また付け忘れていましたが単振り子については習っていないので、教科書などを読んでもどうゆうかんじにすればいいのか分かりません。

      補足日時:2017/06/29 06:18

A 回答 (3件)

単振り子では、運動方程式 F = ma の


・接線方向の加速度:a(t) = L * d²θ/dt²  (←振り子の長さは、数字の1と紛らわしいので大文字の「L」で書きます)
・接線方向に働く力:-mg*sinθ (重力の接線方向成分)
ということですから、振り子の接線方向の運動方程式は
 m * L * d²θ/dt² = -mg*sinθ   ①
になります。

近似解を求めるには、θ ≒ 0 では sinθ ≒ θ と近似できることを利用して(これが「なす角が小さい」ということです)、①を
 m * L * d²θ/dt² ≒ -mg*θ    ②
に近似します。この微分方程式を解くと、一般解は
 θ(t) = C1 * sin(ωt) + C2 * cos(ωt)     ③
(ただし ω= √(g/L、C1、 C2 は任意の定数)

これに与えられた初期条件を適用して、
t=0のとき、θ=θ0(>0)なので
 θ(0) = C2 = θ0   ④
t=0のとき、v=0 なので
 v(t) = L * dθ/dt = C1*ω*cos(ωt) - C2*ω*sin(ωt)
より
 v(0) = C1*ω = 0
ω≠0 なので C1 = 0    ⑤

以上の初期条件から、③は
 θ(t) = θ0 * cos(ωt)     ⑥
となります。

よって、⑥より
 v(t) = L * dθ/dt = - L*θ0 * ω * sin(ωt) = -θ0 * √(gL) * sin[ (√(g/L) *t ]
 a(t) = L * d²θ/dt² = -L*θ0 * ω^2 * cos(ωt)= -θ0 * g * cos[ (√(g/L) *t ]
となります。

単振り子の近似解、厳密解の求め方は、検索すればいくらでも出てきます。たとえば:
https://www.sit.ac.jp/user/konishi/JPN/L_Support …

もし、高校物理レベルで微積分が使えないなら、こんなサイトを参考に。
http://wakariyasui.sakura.ne.jp/p/mech/tann/tann …
    • good
    • 0

「単振り子については習っていない」にしても, このような問題が出るということは運動方程式については知っていることが前提のはずです.



まず運動方程式を作り, その後「糸と鉛直線のなす角θが十分に小さい」という条件で近似すればいいですよ.
    • good
    • 0

どこが「よくわからない」のでしょうか?

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qエレベーターが落下したら中の人ってどうなりますか? 自分が考えたのは、人の質量をm、エレベーターの加

エレベーターが落下したら中の人ってどうなりますか?

自分が考えたのは、人の質量をm、エレベーターの加速度をαとすると、

人には鉛直下向きに重力mg、鉛直上向きに慣性力mαがはたらきますよね?

よって、合力Fは鉛直下向きを正とすると、
F=mg-mα
=m(g-α)

ここで、エレベーターとワイヤー間の摩擦などで、おそらく g>α なので、
F=m(g-α)>0

つまり、下向きに力が働くので人は勝手には浮かないと思ったのですが合ってるでしょうか?


また、このとき地面を蹴ってジャンプしたらどうなりますか?

わかる方いらっしゃいましたら、よろしくお願いいたします!

Aベストアンサー

質問者の示している条件どおりであればエレベータの中の人にとっては重力がg-aになったことと同じになります。

勝手に浮くことはありません。

ジャンプすればエレベータに対して相対的にg-aの加速度で運動します。
空気抵抗などを無視すればジャンプした際に上昇して一番高い点につくまでの時間と一番高い点から床に下降する時間は等しくなります。
ただ、もしこのエレベータがガラス張りで外が見えるようでしたら違うように感じることになると思います。

Q重積分についてです この(3)の問題の解き方がよく分かりません 解説お願いします

重積分についてです
この(3)の問題の解き方がよく分かりません
解説お願いします

Aベストアンサー

領域が円なので、置換積分も可能!
xー1=r・cosθ
y=r・sinθ
y≧0より、0≦θ≦π
0≦r≦1
dxdy=r・dr dθ
∮ ∮【D】3r・sinθ・r・dr・dθ
=∮【0→1】3r^2 dr ∮ 【0→π】sinθ dr dθ
= 1・[ーcosθ]【0→π】
=2

http://www004.upp.so-net.ne.jp/s_honma/integral/integral3.htm
参考に!

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Qちょっとした疑問! 素粒子の中は?

ちょっとした疑問!
素粒子の中は?

Aベストアンサー

中という概念があるかどうかすらハッキリしていない

Q原子核崩壊でα線やβ、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。

原子核崩壊でα線やβ線、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。放射性物質の半減期は何万年もあるものもあります。原子核が崩壊すればそのエネルギーが放射線となって放出されるのはわかるのですが、それは最初の一回だけ起こって、それが起こればもう起こらないのではないですか? つまり放射線も一回だけ出てもう出ない。それがずっと続いているというのは、ずっと原子核崩壊が続いているということなのでしょうか? 放射線が出続けるメカニズムがわかりません。ご教示よろしくお願いいたします。

Aベストアンサー

ある放射能を持つ核種が、単位時間に崩壊する確率は、置かれている環境に左右されません。その核種、固有値であることが経験的に知られています。
確率なので、1つの粒を見ていれば、

・ いつ崩壊するかは神のみぞ知るということで、だれにもわかりません。
・ もちろん、崩壊してしまえば、その粒からは放射線はでません。

ということになります。

その同じ核種を一定量集め、たくさんの粒を統計的に観察し、半分の粒が放射線を出して崩壊するまでの時間を半減期と呼ぶわけです。
たくさんの粒があるから、放射線が出続ける。別に不思議なことはないですね。

半減期ごとに半分になり、やがてすべて崩壊すると、放射線は出なくなります。

Q力学についての質問です。 偏角方向への初速がなく、動径方向には万有引力だけ力がある運動方程式d^2r

力学についての質問です。

偏角方向への初速がなく、動径方向には万有引力だけ力がある運動方程式d^2r/dt^2の解rが知りたく、下の紙のように解いたのですが、積分ができません。
どなたか答えを教えてください。

できれば下の置換の仕方で答えが解きたいです。
よろしくお願いします。

Aベストアンサー

左辺, dr の下にあるのは
√(2k/r + C1)
でしょうか? もしそうなら, 1/r = X とおいても積分は単純ではないと思います.

Maxima によると, いったん
Y = √(2k/r + C1)
と置くとよさそうな感じ. まあこれでもまだまだ処理が続きますが.

Q積分の問題です

高校が文系で大学の積分に困っています。添付した画像の解き方はあっていますでしょうか?なかなか先に進めません。どなたかご教授お願いいたします。

Aベストアンサー

何だか大変そうですね(^^;)
せっかく途中まで計算してあるので、この流れで説明しますね(^^)

2行目第1項(3行目第1項)は
∫x^2/(x^3+8)・dx=(1/3)∫3x^2/(x^3+8)・dx=(1/3)∫(x^3+8)'/(x^3+8)=(1/3)log|x^3+8|

2行目第2項は
分母を因数分解すると (x^3+8)=(x+2)(x^2-2x+4) ですから、この事を使って部分分数に分解します
1/(x^3+8)=1/(x+2)(x^2-2x+4)=A/(x+2) + (Bx+C)/(x^2-2x+4) と置きます
右辺を通分して、その結果の分子は1でないといけませんので、
(分子)=Ax^2-2Ax+4A+Bx^2+Cx+2Bx+2C=1
x^2の係数=A+B=0
xの係数=-2A+C+2B=0
定数項=4A+2C=1

これをA,B,C について解くと A=1/12 B=-1/12 C=1/3
したがって、第2項の積分関数は
1/(x^3+8)=(1/12)・1/(x+2) -(1/12)・(x-4)/(x^2-2x+4)
この式の右辺第1項目は積分できますね・・・問題は第2項目です
第2項目の分母を微分すると (x^2-2x+4)'=2x-2 ですから
(1/12)・(x-4)/(x^2-2x+4)=(1/24)・(2x-8)/(x^2-2x+4)=(1/24)・{(2x-2)-6}/(x^2-2x+4)=(1/24){(2x-2)/(x^2-2x+4) -6/(x^2-2x+4)}
=(1/24){(x^2-2x+4)'/(x^2-2x+4) -6/(x^2-2x+4)}
この式の第1項目の積分はlogになるだけですね・・・問題は第2項目です
x^2-2x+4=(x-1)^2 +3 =3{ (1/3)(x-1)^2 +1}=3{ (x/√3 -1/√3)^2 +1}
したがって、
第2項目=-6/3{ (x/√3 -1/√3)^2 +1}
この式変形で何をやりたいのかと言うと、
∫dx/(x^2+1)=tan^(-1)x
でしたね・・・ですから、
t=x/√3 -1/√3 として置換積分をして下さい

計算ミスがあるかも知れませんので、確認はして下さいね(^^;)
参考になれば幸いです(^^v)

何だか大変そうですね(^^;)
せっかく途中まで計算してあるので、この流れで説明しますね(^^)

2行目第1項(3行目第1項)は
∫x^2/(x^3+8)・dx=(1/3)∫3x^2/(x^3+8)・dx=(1/3)∫(x^3+8)'/(x^3+8)=(1/3)log|x^3+8|

2行目第2項は
分母を因数分解すると (x^3+8)=(x+2)(x^2-2x+4) ですから、この事を使って部分分数に分解します
1/(x^3+8)=1/(x+2)(x^2-2x+4)=A/(x+2) + (Bx+C)/(x^2-2x+4) と置きます
右辺を通分して、その結果の分子は1でないといけませんので、
(分子)=Ax^2-2Ax+4A+Bx^2+Cx+2Bx+2C=1
...続きを読む

Q運動量保存と力学的エネルギー保存

高校物理に詳しい方お願いします。
図のような典型的な問題で、運動量保存の式と力学的エネルギー保存の式から、2つの速度を求めるという問題があるのです
が、なぜ力学的エネルギー保存が成り立つのかわかりません。
力学的エネルギー保存が成り立つのは、保存力のみが仕事をするときだったと思うのですが、小球が斜面を押す力によって斜面が運動していることから、保存力以外のものが仕事を与えているように思えます。なぜ力学的エネルギー保存が成り立つのか詳しく教えていただけると幸いです。

Aベストアンサー

<小球が斜面を押す力によって斜面が運動している>
たしかにそのとおりです。なのでこの力が斜面にする仕事は0ではありません。
しかし同時に、作用反作用の法則によって、小球は斜面からこの力と同じ大きさで
向きが逆の力も受けて運動しています。
そして、斜面がなめらかという条件のもとでは
小球からの力が斜面に対する仕事と斜面からの力が小球にする仕事はそれぞれ0ではないが
それらの和が0になるのです。
このことは、これらの力が斜面と垂直の向きであることと、小球が斜面に沿って運動する
ということから導かれます。

ということなので斜面と、斜面が乗っている床が滑らかで斜面も動く場合、保存するのは
小球の力学的エネルギーではなく、それに斜面の運動エネルギーを加えたものす。

Q複素数の問題です

複素数の問題で、

(3+2i)(3-i)^8/(1-3i)^6

の絶対値を求めたいです。

何度解いても解答が合いません。

Aベストアンサー

|ab|=|a||b|
|(a/b)|=|a|/|b|
|a^2|=|a|^2
この3つを使えば暗算で解ける

Q連立方程式

y=2px+p^2 と3xp^2+2p^3=C からPを消去して、x,y,cの方程式を導く。
なるべく根号を用いないで処理したいのですが、良い方法がありましたら教えてください。

Aベストアンサー

せっかくだから計算してみましょうか。式をいじれば根号は消えますね。

y=2px+p^2    ①
3xp^2+2p^3=C  ②

①より、p^2=-2px+yなので、これを②に代入して、
3x(-2px+y)+2p(-2px+y)=C
-6px^2+3xy-4p^2x+2py=C
-6px^2+3xy-4(-2px+y)x+2py=C
∴2p(x^2+y)-xy=C
よって、p=(xy+C)/2(x^2+y)

①より、pの2次方程式を解いて、p=-x±√(x^2+y)なので、
-x±√(x^2+y)=(xy+C)/2(x^2+y)
±√(x^2+y)=x+(xy+C)/2(x^2+y)

両辺を2乗して、分母を払い、整理すると(この過程は単純計算なので省略)、

-4Cx^3+3x^2y^2-6Cxy+4y^3-C^2=0


人気Q&Aランキング