(a-b)a=0はa=bであるための必要条件である

この問題で


(a-b)a=0
a²-ab=0
a²=ab
a=ab/a

これを約分して

a=b

これで必要十分条件にはならないのですか?

質問者からの補足コメント

  • これはどう?

    至急です!
    お願いします|ω・`)

      補足日時:2017/07/11 03:03
  • お茶碗もつ方が答えてくださったように、a≠0の場合など、見落としがちなのですが、どうしたら防げるのでしょうか?

    アドバイス頂けると嬉しいです。

      補足日時:2017/07/11 03:12
  • あ、ごめんなさい…

    お茶碗持つ方でした、お名前を入力し間違えてしまい、申し訳ございません。

      補足日時:2017/07/11 03:12
  • あと、「お茶碗持つ方」さんですね……

    何度もすみません(´;ω;`)

      補足日時:2017/07/11 03:13

A 回答 (5件)

(a-b)a=0


を満たす値はa=bもしくはa=0です。
わざわざ展開して解くからa=0が無くなってしまったのでは?
    • good
    • 0

ですから、割算の時は常に 0 を意識しなければならないということです。

    • good
    • 0
この回答へのお礼

ありがとうございます!

お礼日時:2017/07/11 04:32

だから、因数分解されている式をわざわざ展開しなければ良いと。

    • good
    • 1
この回答へのお礼

あ、今やっと理解できました!

因数分解されているのに、必要十分条件になれるかどうかを考えすぎて混乱していました(・・;)

ありがとうございます!

お礼日時:2017/07/11 04:32

等式の両辺には同じ数を足す・引く・掛ける、そして 0 でない数で割ることができますが 0 で割ることだけはできません。



不等式の場合、更に条件が厳しくなっており、正の数で掛けたり割ったりしてもいいのですが、負の数で掛けたり割ったりする場合は不等号の向きが変わり、0 を掛けると等式に変わり、0 で割ることはできません。
    • good
    • 0

(a-b)a=0


a²-ab=0
a²=ab

a≠0の時 ← この条件が抜けてます。

a=ab/a

これを約分して

a=b
    • good
    • 0
この回答へのお礼

あ、なるほど!

つまり、反例はa=0の時ということですか?

お礼日時:2017/07/11 03:05

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q「三平方の定理」の証明

「三平方の定理」の証明を中学2年生にもわかるように教えていただけないでしょうか?

★よろしくお願い致します★

Aベストアンサー

いろいろな証明方法があります。

下記のサイトの物が、解り易いと思います。
正方形の面積から導き出します。
http://www.geisya.or.jp/~mwm48961/math/m3pita02.htm

Q数学について質問です! 方程式で、 |x-2|=3 の時は場合分けをせずに計算できるのに対して |x

数学について質問です!

方程式で、

|x-2|=3
の時は場合分けをせずに計算できるのに対して
|x-2|=3xの時は場合分けをしなくてはならないのですか?

Aベストアンサー

>つまり、c=3xだと、0以上かどうか分からないから…ということですか?

はい、その通りです。xが0以上だなんて問題に書いてませんよね。なのでc=3xだと0以上だと断言できません。

Q弧度法で弧の長さと面積をだす公式が腑に落ちません

弧度法で弧の長さと面積をだす公式が腑に落ちません

弧の長さは、半径 x 中心角(ラジアン)

面積は、半径 x この長さ x 1/2


とのことですが、なぜ上記の公式で、弧の長さと、面積を求めることができるのでしょうか?

Aベストアンサー

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角の割合を掛け合わせたものだとわかります。

よって、このようにすると
「直径 × 円周率」が円の円周の長さ、
「円周率 × 半径 × 半径」が円の面積であることはすでに習っているはずなので
計算式上で理解しやすいはずです。


さて、ではなぜラジアンを使うのでしょうかという問いですが、
実は半径1の円において、円周の長さが2π(ラジアン)であることに関係しています。
半径1の円の弧の長さ
=円周の長さ × 中心角の割合 =2π × 中心角の割合
=中心角(ラジアン)
ここから、弧の長さ=半径×中心角(ラジアン)が導かれるのです。
きちんと理解ができていれば、ラジアンを使ったほうが簡単だったというだけですね。


扇形の面積に関しては、計算式から求めても構わないのですが、
直感的には、No.4のかたの言うように、三角形に細分化したものを考えます。

同じ扇形を二つ用意して、これを小さな扇形にカットしたものを想像してください。
そしてそれを交互に組み合わせていきます。
 ~~~~
/    /
~~~~
カットの仕方が大きいと上の図のようになりますが、
より微細にカットしたものを使うことによって、
| ̄ ̄ ̄|
|   |
  ̄ ̄ ̄
というように、だんだん長方形に近づいていきます。
このとき、底辺が弧の長さ、高さが半径に近づいていきます。
こうすることによって、
扇形の面積(の2個分)は弧の長さ × 半径 と表されるのです。
すなわち、
扇形の面積=弧の長さ × 半径 ÷2
という式が導かれるわけです。

この作業をしているのが積分なのですが、それは割愛します。

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角...続きを読む

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Qなぜ1m+1m=2mなのですか? そう定義したからですか?

なぜ1m+1m=2mなのですか?
そう定義したからですか?

Aベストアンサー

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4kmで出発した弟を、お兄さんが時速16kmの自転車で追いかけるときの追いつく時刻についても、単純な引き算・割り算「ex4×3÷(16-4)」だけでなく、観測者がだれなのかといった視点も含め一般相対論による修正が厳密には必要でしょう。


付言するならば、「算数」という教科は、この世の「自然に受け入れられている身の回りの法則・原理について学ぶ(つべこべ言わずに覚える)教科」であり、「数学」はこの世の法則にとどまらず、厳密な意味での「数の体系」についても学ぶ(厳密性を追求し、証明を求める)教科です。

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4k...続きを読む

Q以前の質問 「円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性

以前の質問

「円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?
例えば
有理数 1/7は0.142857 142857...と無限に循環しますが
無理数がたまたま数回だけループして0.142857 142857 3195634918...などとなる可能性もあります
だから
円周率でも何兆、何京桁と調べていけばこういうループは見つかる可能性がありますか?」

に対して、「不明としか言いようがない」との回答をいただきました。

しかし、円周率は定数なので、確定しないとは考えられないと思いました。

現在では証明できないという意味で不明とおっしゃった場合、そうなる確率だけ求めることは可能ですか?

質問は説明不足でしたが、数列のどこかに繰り返しではなく、初めの連続した2ブロック以上が同じ列であるということです
(0.123123...は良いが0.0123123...はなし)

また、円周率が完全にランダムであることはまだ証明されていませんが、ランダムであると仮定して話を進めてください

ループを確かめる手順は
まず円周率の初めは3.1です。
もし次が1で3.11ならば、1桁のループが成立するが、実際には3.14なので次を見る。3.1414だったら2桁のループが成立するが、実際には3.1415だから成り立たない。
1桁目と4桁目が違うので3桁のループはない。次を見て3.14151415の場合、4桁のループだがそれも違う。これをループができるまで無限に見ていく
チャンスを逃す度、次にループができる確率は天文学的に下がっていきますが、それでも決して0にはなりません。ならばいつかループが起こるか、ということです

以前の質問

「円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?
例えば
有理数 1/7は0.142857 142857...と無限に循環しますが
無理数がたまたま数回だけループして0.142857 142857 3195634918...などとなる可能性もあります
だから
円周率でも何兆、何京桁と調べていけばこういうループは見つかる可能性がありますか?」

に対して、「不明としか言いようがない」との回答をいただきました。

しかし、円周率は定数なので、確定しないとは考えられないと...続きを読む

Aベストアンサー

>円周率は定数なので、確定しないとは考えられない
おっしゃるとおりです. なので, 確率は0か1のどちらかです. どちらなのかは, 恐らくまだ誰にも証明されていないでしょう.
その上で, 質問者の方が気にしていることは, 恐らく次の問題ではないかと推察します:
「r を 0≦r<1 の範囲の一様乱数とする. r において "ループが見つかる" 可能性はいくらか.」
(注: 小数を十進展開する際, 「0.6768000...=0.6767999...」のように 2 通りに表せるケースがあります. このような場合, 前者の表し方だとループがなく, 後者の表し方だとループがあることになります. しかし, r がこのように 2 通りに表せる確率は 0 なので, このようなケースについて気にする必要はありません.)

この問題について考えてみたのですが, 結論からいうとよくわかりませんでした.

r は一様乱数なので, 任意の正整数 n に対し, 小数第 n 位が 0, 1, ..., 9 である確率は 1/10 です.
【1 桁のループが成立する確率】
小数第 1 位 = 小数第 2 位 となればよいので, 1/10 × 1/10 × 10 = 1/10
【2 桁のループが成立する確率】
小数第 1 位 = 小数第 3 位, 小数第 2 位 = 小数第 4 位 となればよいので, 1/100

と考えていくと, n 桁のループが成立する確率は 1/10^n です.
これを n=1,2,3,..., と単純に無限に足し合わせていくと 1/9 になります. しかし, 例えば「2桁のループと5桁のループが両方成立している」といった可能性もあるので, "ループが見つかる" 確率は 1/9 よりは小さいことになります. が, 厳密な値を求めるのはちょっと面倒そうな気がしました. (勘違いかもしれません.)

>円周率は定数なので、確定しないとは考えられない
おっしゃるとおりです. なので, 確率は0か1のどちらかです. どちらなのかは, 恐らくまだ誰にも証明されていないでしょう.
その上で, 質問者の方が気にしていることは, 恐らく次の問題ではないかと推察します:
「r を 0≦r<1 の範囲の一様乱数とする. r において "ループが見つかる" 可能性はいくらか.」
(注: 小数を十進展開する際, 「0.6768000...=0.6767999...」のように 2 通りに表せるケースがあります. このような場合, 前者の表し方だとループがなく, 後者...続きを読む

Qx「cm」+y「cm」+z「cm」=6「cm」 xy「cm^2」+yz「cm^2」+zx「cm^2」

x「cm」+y「cm」+z「cm」=6「cm」
xy「cm^2」+yz「cm^2」+zx「cm^2」=11「cm^2」
xyz「cm^3」=6「cm^3」
のときx,y,zの長さ「cm」を求めよという問題があったとします。
このとき三次方程式の解の公式に代入してときますが、このとき次元はどうするのでしょうか?
このときは量に対する比である倍数にだけ注目すると考えれば良いのですか?

Aベストアンサー

問題ありませんよ。

例えば、、、
xyz/x[cm³/cm] という計算を行った場合、
=yz[cm²] というような形で、次数と同じになります。

結果、なんやらかんやら計算をしてx、y、zを求めたときには、その単位は次数=1ですので必ず[cm]になります。
単位をつけつつ計算しても同じ結果になります。

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む

Q解いてみてください

ちょっとした自作問題。

たかし君とよしこちゃんは板チョコを二つに分けました
たかし君の板チョコをおなじ数ずつのブロックに分けようとすると1つずつ分ける方法しかありません
よしこちゃんも同じように1つずつ分ける方法しかありません
もとの板チョコのブロックの個数が4以上のとき、このような状況になるのは何通りあるでしょう 。

Aベストアンサー

問題の意味が解りません。

「おなじ数ずつのブロックに分けようとすると1つずつ分ける方法しかありません」と云う事は、
たかし君の板チョコのブロック数は、1 以外の約数が無いと云う事ですね。つまり、素数だと云う事。
良子ちゃんの板チョコも同じですから、お互いに素数個のブロックの板チョコを持っていると云う事。

現実的であるナシを問わなければ、答えは無数にあります。

せめて、「板チョコのブロックの個数が4以上のとき」ではなく、
「板チョコのブロックの個数が4以上30以下のとき」だったら、小学校の算数の問題には成ったでしょうに。

Q-n+nについてなんですが、具体的な数字を文字に入れて計算して答えを出したとしても、それがすべての数

-n+nについてなんですが、具体的な数字を文字に入れて計算して答えを出したとしても、それがすべての数字に言えるかどうかなんて確かめるのは不可能ですが、文字の計算はどう考えるべきなんですか?
確かめるのは無理だから、下の写真のように覚えるのがいいですか?

Aベストアンサー

すべての数に対して、0を掛けると0になることは理解できますか?
それが理解できるなら、普通に 3x-3x を計算するだけです。

これは、ひとつには想像力の問題でもあるので、「すべての数に対して確認する必要がある」という発想だと、数学は苦労しますよ。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング