ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

質問です。太陽(質量M)まわりの惑星(質量m)の運動を考える。
(1)2次元極座標を用いて各成分の運動方程式を書け。
(2)θ成分の方程式から、面積速度が定数になることを示せ。
(3)(2)を利用して(1)におけるr成分の方程式を変数rだけ方程式にした後、両辺にvを掛け時間で積分することにより、力学的エネルギー保存則
m/2(v^2+h^2/r^2)-GmM/r=E
を導け。ただし、h/2は面積速度であるとする。
(4)上の式で第2、第3項の和をポテンシャル関数U(r)とみなし、これをrの関数として極小値を与えるr=ro と、極小値V(r=ro)を求めよ。
(5)円軌道を描く惑星のエネルギーを面積速度h/2の関数として求めよ。
お願いします。

A 回答 (2件)

    • good
    • 0

自分でやれ。


宿題の丸投げは質問とは言わない。

理科と国語の勉強が必要だ。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q負の平方根の(社会における)必要性を答えられる方はいますか。中学生に質問されましたが答えられませんで

負の平方根の(社会における)必要性を答えられる方はいますか。中学生に質問されましたが答えられませんでした。

Aベストアンサー

えっとそれは「複素数は実世界でどのように役立つのか?」ということでしょうか?
たぶんそういうご質問ですよね?

量子力学や電磁気学では必須です。これ無しには成り立ちません。
ということはパソコンやスマートフォンをはじめとする半導体を使用した機器が機能しているのは複素数(虚数)を使った自然現象の理解(電子の動きの理解)があってこそのことだと言えます。
波動や振幅を扱う際には必ずオイラーの公式に出会います。
当方はシステム開発の仕事を長くしていましたが、電波関連のシステム開発では虚数単位 i をよく見掛けました。(^^;

なお、以下の本を一読されるとよいかもしれません。
自然界の中で虚数はどのように機能しているかなどが書かれています。

https://www.amazon.co.jp/gp/product/4315520268/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=247&creative=1211&creativeASIN=4315520268&linkCode=as2&tag=atarimae1-22

参考まで。

えっとそれは「複素数は実世界でどのように役立つのか?」ということでしょうか?
たぶんそういうご質問ですよね?

量子力学や電磁気学では必須です。これ無しには成り立ちません。
ということはパソコンやスマートフォンをはじめとする半導体を使用した機器が機能しているのは複素数(虚数)を使った自然現象の理解(電子の動きの理解)があってこそのことだと言えます。
波動や振幅を扱う際には必ずオイラーの公式に出会います。
当方はシステム開発の仕事を長くしていましたが、電波関連のシステム開発では虚...続きを読む

Q弧度法で弧の長さと面積をだす公式が腑に落ちません

弧度法で弧の長さと面積をだす公式が腑に落ちません

弧の長さは、半径 x 中心角(ラジアン)

面積は、半径 x この長さ x 1/2


とのことですが、なぜ上記の公式で、弧の長さと、面積を求めることができるのでしょうか?

Aベストアンサー

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角の割合を掛け合わせたものだとわかります。

よって、このようにすると
「直径 × 円周率」が円の円周の長さ、
「円周率 × 半径 × 半径」が円の面積であることはすでに習っているはずなので
計算式上で理解しやすいはずです。


さて、ではなぜラジアンを使うのでしょうかという問いですが、
実は半径1の円において、円周の長さが2π(ラジアン)であることに関係しています。
半径1の円の弧の長さ
=円周の長さ × 中心角の割合 =2π × 中心角の割合
=中心角(ラジアン)
ここから、弧の長さ=半径×中心角(ラジアン)が導かれるのです。
きちんと理解ができていれば、ラジアンを使ったほうが簡単だったというだけですね。


扇形の面積に関しては、計算式から求めても構わないのですが、
直感的には、No.4のかたの言うように、三角形に細分化したものを考えます。

同じ扇形を二つ用意して、これを小さな扇形にカットしたものを想像してください。
そしてそれを交互に組み合わせていきます。
 ~~~~
/    /
~~~~
カットの仕方が大きいと上の図のようになりますが、
より微細にカットしたものを使うことによって、
| ̄ ̄ ̄|
|   |
  ̄ ̄ ̄
というように、だんだん長方形に近づいていきます。
このとき、底辺が弧の長さ、高さが半径に近づいていきます。
こうすることによって、
扇形の面積(の2個分)は弧の長さ × 半径 と表されるのです。
すなわち、
扇形の面積=弧の長さ × 半径 ÷2
という式が導かれるわけです。

この作業をしているのが積分なのですが、それは割愛します。

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角...続きを読む

Q物理学の不思議な世界。 人参ドレッシングが好きなので人参を大根おろしのようにすり潰してサラダドレッシ

物理学の不思議な世界。

人参ドレッシングが好きなので人参を大根おろしのようにすり潰してサラダドレッシングに混ぜてボトルに入れてるのだが、なぜか人参おろしが液体に沈まずに浮いている。

なぜ沈まずに浮くのでしょう?

Aベストアンサー

サラダドレッシングと摩り下ろしニンジンの比重を測定したらどうですか?

比重は水を1とした場合の比較換算値だから、重さ/体積の密度でも良いです。

小学生の夏休みの自由研究に手ごろ。

比重(密度)が、摩り下ろしニンジン<ドレッシング、だから浮かぶ。

Q物理と数学の違いについて 続きです。 例えば長方形の一辺がx「cm」もう一方がy「cm」 y「cm」

物理と数学の違いについて
続きです。
例えば長方形の一辺がx「cm」もう一方がy「cm」
y「cm」=x^2「cm」
という関係をもつ2つの長さを求める問題は存在します。
しかしこの式は物理ではあり得ない式となるらしいです。
物理では両辺の単位が揃っていないといけないので左辺の単位は「cm」右辺の単位は「cm^2」だからです。
ただこのような関係をもつ長方形の集合は現実に存在します。
しかし物理としては❌です。
つまり自然から導き出した等式を見つけるのが物理で、その単位は必ず一致している。
人為的に等式を作り出すのが数学で、その単位が一致しているとは限らない。
という理解でいいですかね?

Aベストアンサー

最初に教えた人は「単位をそろえて一致させます」、実際の言葉はともかく内容はこうだったはずです。
国語の理解能力が十分でない質問者にとっては「そろえる」「一致させる」の区別があいまいなままでした。
板書で例を示すと、1mと50cmをつなぐと?、1m+50cm=150m(cm)?、このままでは数値のみの計算できません、そこで単位をそろえます①100cm+50cm=150cm。
単位がすべて一致、左辺右辺の単位も一致しています。
これをどう理解記憶するかが問題です。
国語の理解能力なし、結果だけほしがる、コピペ頭、が三重奏を奏でると。
「そろえる」「一致させる」の区別があいまいのため、似たようなもの、または同じと思い込む
①の板書は、そろえる、の内容ではなく、そろえた結果、です、結果だけ欲しがり、なぜ?は考えません。
結果の見てくれだけを、そのままコピペ、記憶の際、国語の理解能力欠如のため「そろえる」「一致」が同じと思い込み、見た眼だけで簡単にわかる「一致」だけで記憶した。
これがすべてです。
物理では次元の異なる単位の数値を掛け算、割り算します、答えも全く異なる次元の異なる単位になります。
単位が一致しません、そこで慌てて、自分の間違った概念に無理やりくっつけたのが、法則や比例・・・そのたの言葉です。
長さ×長さ=面積、m×m=m²、右辺と左辺単位が異なります、でもこれ物理の計算というより、算数レベルの計算ですね、そんなことには目をつぶっています。
小中学生対象の学力テストの結果、国語の読解力が諸外国に比べ相当劣っているらしい、質問者は明らかにその元凶のうちの一人と思います。
ハイ、お粗末。

最初に教えた人は「単位をそろえて一致させます」、実際の言葉はともかく内容はこうだったはずです。
国語の理解能力が十分でない質問者にとっては「そろえる」「一致させる」の区別があいまいなままでした。
板書で例を示すと、1mと50cmをつなぐと?、1m+50cm=150m(cm)?、このままでは数値のみの計算できません、そこで単位をそろえます①100cm+50cm=150cm。
単位がすべて一致、左辺右辺の単位も一致しています。
これをどう理解記憶するかが問題です。
国語の理解能力な...続きを読む

Q輻射による液体の表面温度の低下について

初めて質問させていただきます。

ある箱の中に温度の高い液体が存在している場合、放射(輻射)・放熱により液体表面は冷却されると認識しております。
箱の内壁の温度をT1,内側の雰囲気の温度をT2,液体の表面の温度をTとした際にTの単位時間当たりの温度変化ΔTはどのように計算できるのかご教授お願い致します。(計算に関係するのであればボルツマン係数:σ, 液体の表面積A,液体の放射率Bとしてください)

宜しくお願い致します。

Aベストアンサー

容積と比熱量で割ったら出てくるんじゃないですかね。

Q原子核崩壊でα線やβ、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。

原子核崩壊でα線やβ線、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。放射性物質の半減期は何万年もあるものもあります。原子核が崩壊すればそのエネルギーが放射線となって放出されるのはわかるのですが、それは最初の一回だけ起こって、それが起こればもう起こらないのではないですか? つまり放射線も一回だけ出てもう出ない。それがずっと続いているというのは、ずっと原子核崩壊が続いているということなのでしょうか? 放射線が出続けるメカニズムがわかりません。ご教示よろしくお願いいたします。

Aベストアンサー

ある放射能を持つ核種が、単位時間に崩壊する確率は、置かれている環境に左右されません。その核種、固有値であることが経験的に知られています。
確率なので、1つの粒を見ていれば、

・ いつ崩壊するかは神のみぞ知るということで、だれにもわかりません。
・ もちろん、崩壊してしまえば、その粒からは放射線はでません。

ということになります。

その同じ核種を一定量集め、たくさんの粒を統計的に観察し、半分の粒が放射線を出して崩壊するまでの時間を半減期と呼ぶわけです。
たくさんの粒があるから、放射線が出続ける。別に不思議なことはないですね。

半減期ごとに半分になり、やがてすべて崩壊すると、放射線は出なくなります。

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む

Q遠心力はなぜ見せかけの力と呼ばれているのですか?

等速円運動をしている物体は、中心方向にrω^2の加速度を持ち、これに質量mをかけた力Fを向心力といいますが、一方でなぜ遠心力は慣性系で見せかけの力といわれているのでしょうか?個人的には、遠心力は見せかけの力などではなく、向心力との力のつり合いや、向心力の反作用のような気がするのですが。また、遠心力が見せかけの力なのであれば、向心力も見せかけの力であると考えますが、向心力はそういう定義ではありませんよね。遠心力は実際に、水の入ったバケツを振り回した際、水がこぼれなくなる力であり、スクーターなどの遠心クラッチや遠心プーリなどは、この原理を応用して、クチッチや、プーリの開閉をしてギア比の調整をしています。

お教えください。以上です。

Aベストアンサー

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観察すれば、板は引っ張られる方向に動きつつ手前に移動します、つまり斜めに移動、この瞬間が連続すると軌跡が円運動になります。
その結果さいころは向こう側の壁に押し付けられ続けます。
最初のさいころの動き、板の上だけ見ているとサイコロが向こう側に動いたと見えます、でもサイコロには何も力は加わっていません、力が加わり動いたのは板です。
全体を見ると?、透明の板でしたが方眼紙のようなメモリがあると、サイコロは当初から引っ張られている方向には移動していますが、こちら側にに向こう側にも、壁に当たるまでは移動していません。
でも確かに壁に当たり、何等かの力?は当然感じます、これが遠心力。
反対方向に進む電車が同時に停車していて片方が動き出したとき、一瞬はどちらが動いたのかは判断できないのと同じ。
つまり物体自身の慣性により動こうとしないのに相手が動く、相対的に物体自身が動いたよう感じる。
等速直線運動はどちらも同じ条件のため、停止状態と等価、ゆえに、相対的に感じる遠心力は向心力と正反対になる。

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観...続きを読む

Q数学1の三角比について質問です。sinの値が90度を超えると、直角三角形は作れないと思うのですが

数学1の三角比について質問です。

sinの値が90度を超えると、直角三角形は作れないと思うのですが、

例えば、sin135度=sin45度となるようです。

sin135度ということは、三角形の一つの角の大きさが、135度ということですが、

135度という角度を含む三角形は、そもそも直角三角形にはならないので、なぜsin45度と同じになるのか、理解できません。

Aベストアンサー

解り易い様に直角3角形を使うのだけれど、実際には直角三角形では無く、角度に対して決めたもの。

下の図の左で、赤(y)/青(斜辺)をsinθ、緑(x)/青(斜辺)をcosθと決めた。
それを解り易く直角3角形で置き換えると、右の図。

青(斜辺)は絶対値で正。x,yは正負の符号が付く。
130度の場合はy/青(斜辺)でyは正。
45の場合もy/青(斜辺)でyは正。

どちらも、y/青(斜辺)は同じ値になるでしょう?

Q断熱変化の仕事について質問です。 なぜWa+Wb=0 にならないのですか?

断熱変化の仕事について質問です。

なぜWa+Wb=0

にならないのですか?

Aベストアンサー

問題文は、なんですか?


人気Q&Aランキング